データ・アナリティクス入門

比較で解き明かす分析の魅力

分析の苦手意識はどう変わった? 分析は比較なり、という言葉をきっかけに、これまで抱いていた「分析」という言葉への苦手意識が和らぎました。分析を「要素に分解し、比較する」とシンプルに捉え直すことで、データ分析の目的や方法を改めて見直す機会となりました。また、比較する際には、常に同じ条件である「Apple to Apple」を心がけることが重要であると理解できました。 継続率向上の秘訣は? 分析の目的を明確に定めた上でデータを取り扱い、最終的には意思決定に結びつけることが目標です。特に、サービスの継続率向上に向け、何があればサービスが続けやすいか、または辞めてしまうかという点から、顧客ニーズをより深く分析していきたいと考えています。 資料の真意は何? これまで、分析担当者が作成した資料をそのまま受け取るだけでしたが、今後は「何の目的で、どの要素を比較しているのか」を意識して資料を読み解くよう努めます。さらに、顧客のサービス継続率や利用・活用率といった数値を日々確認し、昨年比の大まかな変動だけでなく、そこから導き出せる具体的な示唆についても考察を深めていくつもりです。

データ・アナリティクス入門

分解して実験!柔軟思考の学び

原因はどう分析する? 原因を把握するためには、まず複数のプロセスに分解して考え、どこに問題が潜んでいるか確認することが重要です。良さそうな仮説が浮かんだら、すぐに試して実際の反応を収集し、実験や検証を通じてブラッシュアップしていくプロセスが効果的です。正しい原因を探しすぎず、迅速な行動が大切だと思います。 どこで顧客が離脱? ファネル分析は、顧客の行動を理解するのに役立つ手法です。各プロセスを細かく分解し、数値や割合を比較することで、どの段階で大きな離脱が発生しているかが明確になります。例えば、ECサイトにおいては、検索段階なのか、カート投入後なのか、決済時なのかといった具体的な離脱ポイントが把握できる点が特に有用です。 分析方法のポイントは? また、What、Where、Why、Howというステップを踏むことで、データ分析の精度が向上し、迅速な問題解決につながると実感しています。仮説を複数立てたりプロセスを細かく分解することは大切ですが、それに固執しすぎると原因分析や具体的な改善策の検討に進めなくなるため、柔軟な思考を保つことが重要だと感じました。

マーケティング入門

価値創造に挑む学びの軌跡

顧客志向はなぜ必要? マーケティングの定義を「仕組みづくり」と捉え、常に顧客志向を意識する重要性が説かれています。商品自体の良さだけでは売れず、その魅力を適切に伝える力が求められます。自分の考えや想いが自己中心的になっていないかを検証するために、フレームワークに基づいた論理的な仕組みづくりが身につく内容です。 実践方法はどうする? この知識は、新商品や企画、施策を検討し実行する際に大いに役立ちます。また、各顧客のビジネス構造を理解し、顧客視点で提案することで、「誰に・何を・なぜ」売るかをロジカルに設計し、売れる仕組みを内外で提案できる能力を養うことができます。加えて、マーケティング視点での営業提案書やプロモーション企画の作成においても実践的なスキルが身につくと感じました。 価値提供はどう考える? マーケティングを通じて売れる仕組みを作る際、顧客に提供する価値についてさらに深く理解したいと思います。相手ごとに価値の基準が大きく異なるため、マーケティングにおける「価値設計」は極めて難しい分野ですが、より深い学びによってその本質に迫りたいという意欲が湧きました。

クリティカルシンキング入門

分解で見つける成功のカギ

丁寧な分解が重要な理由は? 分解を雑に行うと誤った結論を導き出してしまうため、分解は丁寧に、さまざまな切り口で行うことが重要です。具体的には、分解には「いつ(When)」「どこで(Where)」「誰が(Who)」「どのように(How)」といった視点をうまく使う必要があります。また、分解の方法には、一般的な層別分解だけでなく、変数分解やプロセス分解も活用することが有効です。 多すぎる切り口に注意が必要? しかし、切り口が多くなりすぎると、全体像を見失ったり、結論が見いだせない場合もあります。そのため、市場動向や顧客状況を分析する際は、切り口を複数選んで、場合によっては別の角度からアプローチするように心がけます。 自然材料マーケティングの分析法は? 私は、半導体の新規材料のマーケティング業務を担当しているため、市場動向や材料に対する検討意欲を分析する際、地域別、用途別、コミットメント方法、期待金額別・期待機能別、追加投資別といった基準を用いて、MECE(もれなくダブりなく)を意識して行うようにしています。この分析は、今年度のレビューと来年度の計画立案時に実施します。

データ・アナリティクス入門

仮説で切り拓く未来戦略

仮説をどう整理する? 今回の講義では、複数の仮説を立て、その網羅性に注目する視点が非常に印象的でした。これまで仮説検証に取り組む際、十分に意識していなかった点も改めて考える良いきっかけとなりました。特に、結論を導くための仮説と問題解決に向けた仮説を、過去・現在・将来の軸で整理して考える手法は、新たな学びとして大変有意義でした。また、仮説を証明するために必要なデータの収集方法や、データを加工する際の視点についても、今後さらに知識を深めるべきと感じました。 データで何を探る? さらに、Google Analytics以外の情報源、例えば売上データや顧客データ、購買データなどから顧客の傾向や購買パターンを把握し、適切な施策へと結びつける重要性を再認識しました。仮説検討時には3Cや4Pの視点を意識し、より具体的な改善策に取り組んでいきたいと考えています。担当クライアントのデータを活用しながら、どの組み合わせの商品が選ばれるのか、また一回あたりの購入金額をいかに向上させるかなど、具体的な戦略を検討し、常に新たな課題や仮説に向き合う姿勢を持ち続けることが大切だと実感しました。

戦略思考入門

営業戦略を磨く!フレームワーク活用の魅力

フレームワーク活用の効果は? 3C、SWOT、PESTのフレームワークを活用することで、戦略の検討を網羅的に進められることが分かりました。これらの分析結果を基に、自社のリソース状況や競合の動向を考慮し、優先順位をつける重要性を認識しました。この優先順位付けは会社ごとの特性や経営陣の考えが反映されやすく、企業の特徴を示す部分でもあるため、今後の企業分析において注目していきたいと感じました。 営業戦略には何を意識する? 私はインドネシアで営業責任者を務めており、営業戦略を立案する機会が多いです。その際、上記のフレームワークを活用して事業環境や経営戦略を整理し、説得力のある営業戦略を立案したいと考えています。また、顧客ごとのアカウントプラン作成時にも3Cを意識し、戦略的に営業を進めていくつもりです。 会議に向けた準備とは? 来月末の戦略会議に向けて、3C、SWOT、PESTを利用した環境分析を自分なりに行い、それを資料にまとめたいと思います。さらに、営業メンバーとのミーティングでは、3Cを意識して顧客開拓の方向性を示す会話を心掛けていきたいと思います。

マーケティング入門

多角的視点で見つけた認知のヒント

マーケティングの意味はどう? マーケティングを一つの考え方として押し付けるのではなく、その場その場に適した多様な視点を前提にし、適切な定義のもとで課題解決に取り組むアプローチは、とても意義深いと感じました。ただし、単なるプロモーションと捉えている企業においては、広い意味でのマーケティング活動に別の名称を与える必要があるのではないかと思います。 利用者の生活はどう? また、自分が提供するブログやWebツールを必要とする人々がどのようなライフスタイルを送り、どのようなメディアに触れているのか、さらにはどのようなアプローチで認知してもらえるのかを考えることが重要だと感じています。そうした人々が何を求めているのかを明確にすることで、より効果的な情報発信が可能になると思います。 認知向上の方法は? 加えて、顧客が求める製品やサービスは分かりやすいものの、多くの製品やサービスが、その存在を必要とする人々に十分に認知されていない現状があります。膨大な広告予算に頼ることなく、どのようにして認知度を向上させるかについて、より経験豊富な方々の意見を聞いてみたいと思いました。

戦略思考入門

経済効果に隠された学びの真実

生産効率はどう評価? 「規模の経済性」を考える際には、単に生産量だけでなく、各プロセスの稼働率にも着目することが大切だと感じました。同様に「習熟効果」についても、製造業などでは自然な現象として捉えられている印象です。一方で、平準化と対比される点は意外な発見でした。しかし、昨今の人手不足の現状と、習熟する前にすぐ辞めてしまう現実を考えると、従来の「習熟効果」による改善が難しくなっているのではないかという危機感も抱きました。 多角化のリスクは? また、「範囲の不経済」という概念は非常に興味深く、安易な多角化がこの問題に陥る事例は意外と多いのではないかと思います。 経済性はどちらだ? 一方で、「習熟効果」については理解しやすく、納得感もありました。しかし、目指すビジネスモデルからは「規模の経済性」がかけ離れているため、既存顧客に対するサービスの提供バリエーションを拡大するという観点から「範囲の経済性」を考えるほうがイメージしやすいと感じました。 人件費はどう削減? さらに、人件費削減に関しては、外部調達や生成AIの活用が一つの解決策になり得ると考えています。

クリティカルシンキング入門

グループワークで磨く思考の翼

授業の成果はどう? Live授業では、マクドナルドの課題に取り組んだことがとても印象に残りました。短いグループワークの時間の中で、メンバー同士が次々と仮説を立て、必要な課題を特定するプロセスに取り組めた点は、クリティカルシンキングが着実に身についていると実感できる貴重な経験でした。 分析のばらつきはどう? 一方、興味が薄い題材では、分析の精度にばらつきが見られることも感じました。今後は幅広いデータパターンの知識を増やし、どんな題材でも予測が立てやすくなるよう、練習を重ねていきたいと思っています。 参考資料はどう利用? また、自分の分析結果の検証のため、既に加工されたデータが公開されているウェブサイトを参考にすることができました。たまたま目にした統計資料は、とても扱いやすく、分析の答え合わせに役立ちました。 顧客事例から学ぶ? さらに、業界別の顧客事例を読み込み、自分の言葉で要約することで、各顧客の根本的な課題やその解決策を十分に理解することができました。今後は、この姿勢を仕事にも活かし、何がイシューなのかを意識して考えていきたいと考えています。

データ・アナリティクス入門

効果的な問題解決のための4ステップ攻略法

問題解決の基本ステップとは? 問題解決とは、「あるべき姿とのGAP」「ありたい姿とのGAP」を埋めることだと学びました。また、具体的なアプローチとして、解決策の立案(How)から入るのではなく、まず問題の明確化(What)、問題箇所の特定(Where)、原因の分析(Why)、そして解決策の立案(How)という4つのステップを踏む必要があることを理解しました。 顧客との関係構築に役立つステップとは? 顧客との関係構築においても、「ありたい姿」を設定し、この問題解決の4ステップを適用することで、効果的に思考を進められることを学びました。例えば、特定の顧客を対象としたアカウントプランの策定や、顧客満足度調査に対する分析やフィードバックなどに、この手法を活用したいと考えています。 フレームワーク活用のポイントは? 問題解決の4ステップを正しく実践するためには、フレームワークを意識し、問題の特定、原因分析、対策立案を論理的に行うことが重要です。問題の認識、原因の分析、対策の立案において、誤った捉え方や抜け漏れがないよう、フレームワークを活用していきたいと考えています。

リーダーシップ・キャリアビジョン入門

状況別!柔軟マネジメントの実践術

どの管理法が効く? 指示型、参加型、支援型、達成志向型といったマネジメントスタイルがあり、部下の能力や状況に応じて使い分けることが大切だと感じています。個人的には、主に指示型と参加型を活用しているという印象です。一方、リーダー層に対しては、自立を促すために支援型や達成志向型のアプローチが必要だと思います。 打合せはどう選ぶ? また、対顧客、リーダークラスとの打合せ、プロジェクトメンバーとの打合せ、1ON1など、会議の内容や参加するメンバーが異なるため、状況に合わせた手法の使い分けが求められます。特に1ON1では、メンバーそれぞれの性格に合わせて配慮することが重要だと考えています。 どの手法が最適? 具体的には、プロジェクトなど様々なメンバーが参加する打合せでは、指示型のアプローチを基本としたいと考えています。リーダークラスの会議では、参加型を取り入れて各自の自立心を引き出すことが効果的だと思います。そして、対顧客との打合せや1ON1では、指示型、参加型、支援型を状況に応じて使い分けることで、より良いコミュニケーションが実現できるのではないかと感じています。

データ・アナリティクス入門

仮説が導く学びの扉

仮説の役割って何? 「仮説」を立てる重要性を再認識しました。特に、3C(顧客・競合・自社)や4P(製品・価格・場所・プロモーション)といったフレームワークは、網羅的な仮説形成に有効であると実感しています。これまではあまり意識せずに活用してこなかったため、今後は欠かさず取り入れていこうと考えています。 従来方法の問題点はどう? 従来は、実績ベースで特徴や傾向を把握し、その後に仮説を立てる方法で業務を進めていました。しかし、その方法だと仮説が固定的になり、複数のパターンを検討できなかったり、現状にないデータへの仮説が立てられなかったりするというデメリットを改めて感じました。 新たな仮説の進め方は? そこで、今後はデータを見る前に課題に対して仮説を書き出すことから始めます。その際、3Pや4Cといったフレームワークを利用し、生成AIなども活用して個人のバイアスを抑えるよう努めます。検証段階では「WHERE」「WHY」「HOW」といった観点から複数パターンの仮説を立て、それらをデータとして記録し、「仮説→検証→結果」というプロセスを確実に回していきたいと思います。

「顧客 × 客」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right