クリティカルシンキング入門

業務で活かすクリティカルシンキングの実践法

クリティカルシンキングの重要性とは? クリティカルシンキングにおいて、自分自身を批判的に考えることがまず印象的でした。本講座を受講する中で、業務において客観的に物事を考え、説得力のある説明や実効性のある施策を目指して取り組みました。以下の3点が特に学びとして強調されました。 1. 考え方: 課題を検討するゴール(イシュー)から必ず考えること。 2. 施策検討: ロジックツリーを用いた分析。 - データ分析でイシューの場所を特定(Where) - 原因究明(Why) - 施策検討(How) - 施策による副作用検討 - 実行 このプロセスでは、既存のフレームワーク(MECE、SWOT、3C、4Pなど)を使い、偏らないようにします。 3. 伝え方: ピラミッドストラクチャー(主張と根拠)とスライドの工夫(1スライド1メッセージ、効果的な可視化)。 新卒採用に潜む課題は? 現在、私は人事担当として、要員計画、能力開発、人事制度、エンゲージメントなどの施策を検討しています。例えば、要員計画の一環として新卒採用施策を検討する際、多くの学生に応募してもらうためのイベントの拡充に取り組んできましたが、本講座を通じて「取り組みやすい施策に飛びつく」傾向があることに気付きました。 新卒採用における課題を「会社になじめず早期退職やメンタル不調になる若手」と「売り手市場での質・量の確保が難しい点」の2つに設定した場合、イベントの拡充は有効ですが、前者への取り組みが不足していると感じました。 より良い施策実現に向けてどう進めるべきか? 今後は、具体的施策を検討する前に全体のイシューをロジックツリーで整理し、原因(Where、Why)および具体策(How)を検討します。そして、同僚や上司からのフィードバックを反映し、より良い施策を実施します。 最近受講したWeek5では、以下の点に取り組んでおり、継続して進めたいと思っています。 1. 現在取り組んでいる人事施策のイシューの洗い出しと優先順位の設定。 2. 自分が実務を担当する業務では、原因の特定と施策の検討。 3. 部下が実務を担当する業務では、クリティカルシンキングの考え方を紹介。 例えば、各人事施策に対して、「取り組みやすさ」に逃げず、本質的な課題に正面から向き合って解決していきたいと考えています。

クリティカルシンキング入門

文章力アップで仕事が劇的に変わる!

学びを仕事にどう活かす? 今週の学習を通して、以下のことを学びました。相手に伝わる文章を作成するには訓練が必要であると感じたため、今週の学びを今後、自身の仕事でも活かしていきたいと思います。 短い文を書くポイントは? まず、日本語を正しく用いて、読みやすい短い文を書くことが大切です。具体的には、主語と述語、文の長さを意識し、一文は一行以内、長くても60文字を目安にすると良いでしょう。 複数の理由を考える意義は? また、どのような理由づけが適切かは、置かれている状況によって変わるため、複数の理由を考えた上で、最も適切なものを選ぶことが重要です。個々の理由の中身だけでなく、自分がどのような視点で理由づけしているかを意識し、ひとつの理由で満足せず、複数の理由を考えることが大切です。 ピラミッド・ストラクチャーの効果は? さらに、文章を作成する際には、言いたいことを支えるための「柱」を立てることが大切です。トップダウンの手順を踏んで書き進めることを意識し、「ピラミッド・ストラクチャー」等のフレームワークを使うことで、論理の構造を明確にし、伝えたいことをわかりやすく整理することができます。 提案内容をどう伝えるか? 企画案やプレゼン資料を作成する際には、ピラミッド構造を意識して「主張」→「理由」→「根拠」の順で論理を組み立てることが重要です。 また、上司やメンバーへの提案内容を整理する際には、複数の理由を考え、状況に応じた適切な理由づけを行うとともに、自分がどのような視点で理由づけしているかを相手に説明できるようにすることが大切です。 わかりやすい報告書を書くには? 報告書等を作成する際には、文章全体を俯瞰してチェックし、主語と述語の繋がり、一文の長さに注意することで、読み手にとってわかりやすい文章を意識することが求められます。特に、一文はできれば一行以内、長くても60文字を守ることが重要です。 図解を使った資料作成のコツは? 最後に、提案資料を作成する際にはまず図解などを用いて自身の考えをまとめ、ピラミッド構造に落とし込み、理由と根拠を整理してから資料作成に入ると良いでしょう。この習慣をつけることで、自身の思考の妥当性を検証しながら、効果的な資料を作成することができると思います。 これらのポイントを意識して、今後の業務に活かしていきたいです。

クリティカルシンキング入門

数値分析にひたる楽しさを発見

数字の分解をどう進める? 数値を分析する際には、その分解が重要です。まず、視覚的に数字を分解する方法として、グラフや率に変換することで、新たな視点が得られます。また、年齢別、男女別、天候、曜日、時間軸、新規既存、場所、近隣施設、売場面積など、あらゆる角度から数字を分解することで、様々な発見が可能です。繰り返し分解することで、新たな傾向が見えてくることもあります。分解しても何も見えない場合は、他の切り口を試してみるのが良いでしょう。 数字分析の重要ポイントは? この分解の作業は、まるでダンジョンを探検するようなもので、新たな気付きを得るほどに面白くなります。しかし、無秩序に進めるのは危険です。そこで、MECE(ダブりなく・モレなく)を意識し、網羅的な数値の切り口を探すことが重要です。また、期間、金額、人数などの下限値や上限値を定義して分解するのも効果的です。 おすすめの分解手法は? 分解手法としては、以下の3つをおすすめします。 1. 層別分解:全体を2つ以上のグループに分ける方法です。例えば、年齢別や所得別に分解します。 2. 変数分解:売上や単価、販売数をもとに、利益率や原価率などに変えて分解する方法です。 3. プロセス分解:入店前、入店後、商品選択・支払い・退店などのプロセスごとに分解する方法です。この手法は、業務効率の改善にも役立ちます。 プロセス分解で何が見える? クライアントからの相談や自分たちの業務効率改善において、プロセス分解は非常に有効です。業務プロセスのどの部分で時間を使っているのか、その部分をさらに細分化し、どの作業に時間がかかっているのかを分析します。それにより、課題解決に繋がり、業務効率改善や業務内容の見直しなど、幅広い提案が可能となります。 問題解決へのステップは? プロセスに着目しながら業務を遂行することで、偏りを拭う習慣をつけ、問題のあるプロセスを分解してみることが大切です。その結果から多くの気付きを得て、解決の糸口を探りましょう。導き出した答えを他者と共有し、さらにブラッシュアップすることも重要です。これにより、3つの視点・視座・視野を広げることができます。 行動計画をどう立てる? 最後に、これらを活用するために計画的なトレーニングを行いましょう。まずは行動計画を立てることから始めて見てはいかがでしょうか。

データ・アナリティクス入門

対概念で拓く経営戦略の新視点

対概念の意義は何? 対概念とは、ある概念に対して反対または対照的な意味を持つ別の概念を考えることで、物事をより明確に理解し議論の幅を広げる手法です。問題解決に取り組む際は、原因をプロセスに分解する方法、複数の解決策を根拠をもって絞り込む視点、A/Bテスト方式を活用した実践検証、そしてデータ分析を組み合わせた段階的な課題抽出と検証の流れが重要となります。 M&Aリスクはどう考える? 例えば、M&A案件のリスク評価と意思決定においては、ポジティブな要素であるシナジー効果と、ネガティブな統合リスクを対概念として捉え、財務リスク、組織文化、オペレーションといった要因に分解して考えます。各リスク要因を定量化することで、M&A後の成功確率を高めるためのより正確な判断が可能となります。 統合戦略はどれが最適? また、企業の経営戦略策定、特にM&A後の統合戦略においては、段階的統合と急速統合という二つのアプローチを検討し、A/Bテスト方式でそれぞれの効果を比較します。統合プロセスの進捗データや業績、従業員満足度といった具体的な指標をもとに、どちらの戦略がより良い成果を生むかを実証的に評価していきます。 リスク評価の秘訣は? さらに、リスク評価のためのフレームワーク作成では、過去の成功事例や失敗事例をデータベース化し、財務、組織文化、オペレーション、市場環境といった指標を基にリスク評価シートを作成します。これにより、各案件ごとのリスクが客観的に評価され、精度の高い投資判断を導き出すことが期待されます。 定量化結果は何? 続いて、データ分析を用いた定量化では、財務データや従業員エンゲージメント、企業文化の適合度を測る指標を設定し、回帰分析や相関分析を活用します。特に、文化の不一致が従業員の離職率に与える影響などを数値化することで、過去のM&Aデータから成功パターンや失敗パターンを明らかにし、これを次の意思決定に生かすことが可能となります。 結果の信頼はどう確保? 対概念とA/Bテストを通じて物事を深く理解しようとする姿勢は非常に評価できます。今後は、どのような状況で対概念を活用するのが効果的か、またA/Bテストで得られた結果の信頼性をどのように確保していくかといった点について、さらに思考を深めながら実践につなげていくことが求められます。

リーダーシップ・キャリアビジョン入門

プロジェクト成功の鍵!振り返りと成長のヒント

実行は計画通り? ●実行と振り返り プロジェクトの進行に際しては、問題を事前に予測し、適切な対策を準備してスムーズな実行を目指すことが重要です。メンバーのスキルに応じたタスク割り振りと適切なサポートを行うことで、各自が最大限の能力を発揮できる環境を作ります。不測の事態が発生した際には速やかに対応策を考え、メンバー全員と共有します。プロジェクト終了後には振り返りの時間を設け、成功点と改善点をメンバーと共に考えることで、次へのステップを踏み出します。フィードバックも定期的に行い、メンバーの成長を促進したいと考えています。 育成は順調? ●メンバーの育成に繋がるフィードバック メンバーに自己評価を促し、学びを言語化させることで自己認識を高めることができます。フィードバックは具体的な事例を活用しながら行い、評価基準を明確に示すことが大切です。良い点と改善点の両方をバランスよく伝えることで、モチベーションを維持しつつ成長を促進します。改善点については具体的な行動計画に落とし込み、実行可能な形で伝えることが求められます。 承認でやる気? ●モチベーションとインセンティブ チーム内での評価や承認を通じて社会的欲求を満たし、メンバーが自己実現を感じられるプロジェクトや役割を提供します。これは非常にチャレンジングですが、将来的には成果に応じた報酬制度を導入することで、メンバーのモチベーションをさらに高めることを目指しています。 理論で響くか? ●人が働く動機付け3つの理論 マズローの「欲求五段階説」に基づき、基本的な欲求を満たしつつ自己実現欲求を刺激します。また、マグレガーの「X理論・Y理論」をメンバーの特性に応じて使い分け、適切な管理を行います。ハーズバーグの動機付け・衛生理論を活用し、職場環境や給与などの衛生要因を整えるとともに、達成感や承認といった動機付け要因を提供します。 高める秘訣は? ●モチベーションを高める メンバーに感謝の意を示し、評価や承認を通じて満足度を高めます。自分の仕事の意義を理解し、自律的に取り組めるよう、目標を設定することでメンバーの自己意識を促進します。フィードバックは相手の理解を前提として行い、相手の反応を見ながらその手法を工夫します。そして、日常的に信頼関係を築き、メンバーが安心して働ける環境を提供することが重要です。

戦略思考入門

優先順位で達成するキャリア成功の秘訣

優先順位の付け方とは? 日々の業務において、優先順位をつけて取り組むことは重要です。自分が積極的に学ぶことで将来、自分や自社に還元される効果が高いものは、時間がかかっても取り組む価値があります。一方で、効果が低く必要性も低いと感じられるものについては、上司に相談することも一つの方法です。 新規事業の利益予測はどうする? 新規事業案件に関しては、立ち上げる際にその案件がもたらし得る利益や必要な資源を最高、標準、最低のケースで予測することが重要です。実際に市場に出して結果を見たうえで、課題が出てきた場合は、これらの情報に基づき取捨選択を行いましょう。 将来の業務改善方法は? 将来の業務については、各事業所ごとに業績やROIを確認し、製造・販売戦略を改善する必要があります。人的資本の投資優先順位には特に意識を払い、限られたリソースを最大限に活用する工夫が求められます。 キャリア形成のための計画は? キャリア形成の観点からは、3年後や5年後にどのような姿になっていたいかを基に、現在の業務がそのルートに合っているかを判断することが大切です。人事との面談を通じて、必要なスキルや経験を明確化し、具体的な行動計画を立てることが求められます。 効率的な日々の業務管理法は? 日々の業務では、業務をリスト化し、自分や自社への効果を基に優先順位を決めることで効率的に取り組むことができます。例えば、提出期限のある資料や議事録の作成、出張準備、自己研鑽など、それぞれの重要度や緊急度に基づき時間を割り当てると良いでしょう。 拠点改善のための戦略は? 拠点ごとの売上高や製品割合、各製品の利益率に基づき、拠点への注力の仕方や販売戦略を決定することも重要です。中期経営計画に基づき、拠点ごとの改善を進めることで、実現に向けて具体的なステップを踏むことができます。 キャリア目標の具体化はどう行う? キャリアを見据えた行動として、3年後には海外拠点の管理、5年後には駐在という目標を持ち、その実現のために必要なスキルや経験をリスト化し、具体的な行動計画を立てましょう。例えば、財務経験が必要であれば人事に相談し、経営企画業務にもっと時間をかけるなど、現在の業務を見直すことが重要です。常に自分の行動がどのような意味を持つのかを意識しながら、積極的に取り組みましょう。

マーケティング入門

マーケティングの新視点で未来を切り拓く

どうして考え変わった? マーケティングに対して、今までは「商品→ターゲット→提案方法」のみで考えていましたが、学習を通じてより深く理解することができました。特に印象に残ったのは、「自社の強み」と「競合を知る」ことの重要性です。これにより、より優位に活動できると改めて認識しました。同じ商品でも、見せ方を変えることでターゲットが変わるように、自分の視点だけでなく多様な視点から物事を見ることが大切だと感じました。 市場ニーズはどう見える? 市場にどのようなニーズがあるかを捉えることは、ターゲット選定において重要です。顧客ニーズを知るためのインタビューや、業界の情報を常に収集することが習慣化されていると良いでしょう。BtoB市場の特性も考慮しながら、顧客ニーズ、ターゲット、商品が決まれば、それをどのように顧客に届けるかを考える「4P」の考え方も重要であると学びました。購入したグロービスのマーケティングの本を通じて、さらに知識を整理していきたいと思います。 価値は何で決まる? 私たちの会社はオフィスのデジタル化を提案しており、マスマーケティングではなく、OneToOneマーケティングに近い活動に注力しています。同じ商品やサービスでも、顧客にとっての価値が重要です。今回の学びを生かし、顧客特有のニーズを掘り下げるためには、自信を持って精度の高い仮説を立て、仮説が正しいかどうかを顧客にヒアリングすることが肝要です。仮説の精度を向上させるには、今回のマーケティングの考え方が非常に役立ちます。 仮説検証の方法は? 具体的な取り組みとしては、まず市場分析を行い(大手・中小企業のデジタル化の課題)、次に業種別の情報と顧客特有の情報を収集して、どのようにデジタル化を進めたいか仮説を立てます。その後、顧客にインタビューを実施します。そして成功事例を基に、他の展開が可能かどうかを4Pの視点で考えてみたいと思います. 計画の進め方は? まず自社販売地域の市場を把握し、中小企業のデジタル化ニーズを整理することから始めます(12月5日まで)。続いて、商品・サービスの選定を行います(12月10日)。次に、インタビュー環境を整え、自社ショールームでの体験を促進します(12月15日)。最後に、それらを整理し、4Pの視点で2025年の販売計画を策定します(12月25日まで)。

データ・アナリティクス入門

プロセス重視で解決策を見つける秘訣

解決策立案の重要性を痛感 今回は、問題解決のプロセスである「What」「Where」「Why」「How」の「How(解決策の立案)」について学びました。このステップでも、「What」「Where」「Why」同様、複数の仮説を立てることが重要で、仮説の質が問題解決の精度に大きな影響を及ぼすことを改めて実感しました。プロセスに分ける、対概念を活用し対に分けるといったアプローチを学びました。 最適解の選び方を知ろう また、最適な解決策を選択する際には、複数の判断基準を持ち、その重要度に基づいて重み付けを行い、基準を揃えて総合的かつ定量的に評価することで、決めつけや思い込みを排除し、客観性と説得力を担保できると学びました。 仮説検証をハイサイクルで さらに、仮説の確からしさを求めすぎず、仮説検証をハイサイクルで実施することで、より良い仮説検証が行われ、結果として本質的な解決策に結びつくことを理解しました。 共通の留意点とは? 「What」「Where」「Why」「How」の各プロセスで共通して留意すべきポイントは以下の4点です。 1. 目的と仮説を明確にする。 2. 複数の仮説を立てる。ビジネスフレームワークや「分ける」という概念を活用する。 3. 仮説を検証する際は、基準を揃え、分析結果を基に定量的に評価する。 4. 仮説の設定と検証をハイサイクルで行う。 計画策定に向けた意識改革 次期中期事業計画の策定時には、現場で培った経験や勘で導き出した答えを、ビジネスフレームワークを利用して正しいプロセスを一つずつ踏んで答え合わせする意識を持ちたいと思います。ビジネスフレームワークの選定、指標や基準の設定、仮説の構築、データの収集・比較・定量評価、仮説の検証、本質的な解決策の選択など、あらゆる場面で客観性と説得力を備えた事業計画を策定することを目指します。 日常業務での実践ポイント 日々の現場業務の中でも、以下の2点を意識して深く考える癖を身に付け、具体と抽象を行き来することを習慣化したいと思います。 - より高い視座とより広い視野でものごとを見つめるマインドセットを持つ。 - 仮説の確からしさを求めすぎず仮説検証をハイサイクルで実施する。 心に留めておくべきキーワードは「一つ一つ丁寧に」「プロセスを重視する」「胸を借りる」です。

データ・アナリティクス入門

データ分析で解決策を見つける旅

問題解決とデータ分析の関連性とは? 今週の学習を通じて、問題解決のプロセスとデータ分析の関連性について学ぶことができました。特に印象に残ったポイントは、問題解決のステップを「What(現状把握)」、「Where(問題特定)」、「Why(原因究明)」、「How(対策検討)」という形で整理するアプローチです。このステップを行き来しながら問題を深掘りしていく方法は、データ分析で何から取り組んで良いかわからない時に役立つ道筋を示してくれるため、非常に効果的だと感じました。 STARフレームワークの有効性は? 現状把握においては、問題を「あるべき姿」と「現状」のギャップと捉えることが重要です。このギャップを、STAR(Situation:状況、Target:あるべき姿、Action:行動、Result:結果)フレームワークを活用することで、より具体的に問題解決のプロセスをイメージしやすくなります。また、問題を因数分解することで、要素を細分化し問題のある箇所を特定でき、優先的に対応すべきところが明確になります。逆に、不要な範囲を明確にすることで、効率的に問題解決に繋がることも新たな発見でした。 ロジックツリーとMECEの効果は? 問題の因数分解にはロジックツリーが効果的で、層別分解や変数分解(掛け算)の2種類を問題に応じて使い分けることで、より効果的に分析が行えます。MECEの概念も重要で、「抜け漏れ、ダブりなく」問題を捉えることが重要です。 データ分析の具体的な活用例は? 今後、学んだ内容は患者の受診動向調査に活用できると考えています。どのような患者が、どの診療科をどのくらいの頻度で受診しているのかを分析することで、患者のニーズや医療機関の利用状況を把握できます。ただし、実際に活用するためには、現在のデータが分析に必要な要素を網羅しているかを確認する必要があります。 分析の目的は何か? データ分析の目的は、大きく分けて二つです。まず一つ目は患者サービスの向上で、ニーズに合った医療サービスを提供するために分析結果を役立てます。二つ目は病院経営の改善や効率化で、患者の利用状況を分析することで、リソースの最適化が図れます。さらに、定量分析だけでなく定性分析を利用することで、サービス提供時の運用上の問題を解決する可能性もあります。

データ・アナリティクス入門

データ分析で未来を築く!ナノ単科の意義とは

なぜ分析の目的を見失わない? まず、「何のために分析するのか」という「目的」を見失わないことが重要です。その上で、その目的を果たすためにはどのようなデータをどのように分析すれば良いのかという「仮説」を立てることが必要です。その仮説に基づき、必要なデータを収集し「意味を読み取る」ために適切にデータを加工し、その分析結果から新たな発見を導き、より良い意思決定を行うことが求められます。 データビジュアル化の役割とは? データ分析の一連のプロセスにおいて「意味を読み取る」ためには、代表値である平均値および中央値、ばらつき度合いを分布として示す標準偏差を用いた全体像の把握が重要です。また、それらを一目で容易に把握するためにデータのビジュアル化も欠かせません。そして、ビジュアル化されたグラフを見る前に、それまでに得た定量情報や定性情報をもとに自らの解釈と仮説を立て、その解釈・仮説と実際のデータを比較するアプローチを繰り返すことで、分析を深めていきます。 データ分析の順序を守るには? いざデータを前にすると、「仮説を立ててデータを見る」のではなく、「データ同士を比較して仮説を立てる」という癖があることに気づきました。この順序を間違えると意味がなさず、分析を深堀りできません。自然と正しいプロセスを踏むことができるようになるまで、意識して練習を繰り返したいと思います。 予算策定に活かす分析手法は? 直近では、予算策定にこのアプローチを使います。過去の売上や原価をもとに、標準偏差、加重平均、幾何平均、中央値を使ってより確からしい代表値を出し、定性情報も加味して来期の予算を策定します。この際、「仮説を立ててデータを見る(仮説との比較)」ことを意識して取り組みます。また、その代表値にした理由や定性情報の扱いについて第三者と共有し、対話を重ねることで、納得性のあるものとして示すことができるように努めたいと考えています。 今後意識する改善点は? 今後、以下の点を意識して取り組みます。 1. 標準偏差、加重平均、幾何平均について再度勉強し、特徴を深く理解する。 2. 「結論ありき」や「経験と勘」に頼らず、データ分析のプロセスを一つずつ丁寧に踏む。 3. 定性情報を「落としどころ」や「決め打ち」の要素として扱わないように意識する。

データ・アナリティクス入門

データ分析で見つける新たな視点

データ分析における比較の重要性とは? データを比較することは、他のデータと比較することでその意味合いを読み取ることにあります。繰り返しになりますが、「分析は比較なり」が重要です。単純な平均では見落としやすい情報を把握するために、データのビジュアル化を駆使し、バラつきを視覚的に理解することが求められます。比較を行い、グラフを解釈することで仮説を立て、その結果として次に分析すべきデータや分析の深掘りの方向性が明確になります。 代表値だけで十分か?アプローチを考える 大量のデータを比較するアプローチについて考える際、代表値の使用だけではデータの分布状況がわかりません。データの分布を考慮するために、標準偏差を併用します。標準偏差が大きければバラつきが大きく、小さければデータが集約していることを意味します。また、データをビジュアル化することも重要です。実際の業務では、加重平均とデータのビジュアル化が主に行われています。 代表的な数値には以下のものがあります: **代表値** 1. 単純平均 2. 加重平均 3. 幾加平均 4. 中央値 **散らばりを表す数値** - 標準偏差:標準偏差が大きいとデータがばらつき、小さいとデータが集約している。正規分布と2SDルールも考慮します。「起こりにくいことが起こっている」という実感値は5%です。 分析の深化にはどのプロセスが必要? 分析の内容に応じた代表値を使い、内容に応じたビジュアル化の方法を考えることが大切です。案件の特徴を「プロセス×視点×アプローチ」で分析することに重きを置くと良いでしょう。会社の施策展開にあたっても、目的に応じた比較を行い、ビジュアル化し、そこから仮説を立てて分析を深めていくサイクルを徹底していきます。過去の導入事例から仮説検証を行い、どの層にヒットしているかをビジュアル化し、現在進めているターゲティングの選定を進めていくことが求められます。 学びの共有はどのように行う? まず、メンバーにWEEK3の学びを共有し、現在取り組んでいる施策のターゲティングに役立てたいと考えています。根拠のあるデータを作成し、より良い意思決定に繋げることが目標です。代表値と標準偏差の仕組みを理解し、必要に応じて使い分けるために、日常の業務に取り入れてみることから始めましょう。

データ・アナリティクス入門

データ活用で未来を切り拓く鍵

目的を明確にする重要性は? 目的を明確にすることと、正しい比較を行うことは非常に重要です。動画の例では、提示された数字をそのまま信じてしまう場面がありましたが、実際のビジネスシーンでも同様の例は多いと感じます。そもそも、その数字は何のために存在するのか?どのような基準で比較しているのか?比較の手法や数字の計算、抽出方法は正しいのか?データの精度や信頼性も重要です。AIの助言を受けて、身近な実例として新聞のチラシやテレビショッピングに出る数字を見て、何を示しているのか粘り強く理解していきたいと思います。例えば、「当社比」とは一体何を指しているのか?私の両親もそのまま鵜呑みにしているようなので、注意したいところです。 戦略経理とは何か? 経理に関しては、記帳や財務諸表作成がAIや外注で可能になると考えています。ただ、仕訳を行い記帳している際に「不思議だ」と思う点があり、そこを深堀りすることで経費や売上を分析し、会社全体が利用できるデータにすることができるのではないかと考えています。「戦略総務」や「戦略人事」という言葉を聞いたことがありますが、「戦略経理」という考え方もあって良いのではないかと感じます。 データ・ドリブン経営をどう進める? 意思決定にはデータの利用が不可欠です。データ・ドリブン経営という言葉が以前からありますが、そもそもデータに基づかない経営が存在するかという疑問が湧きました。実際の現場では感覚や感情に基づく経営が主流でしたが、私が関与する場面ではデータに基づいた意思決定を推進していきたいです。 仕事の目的を再確認する重要性 業務全般において、目的を明確にすることが重要です。これまでの仕事の中で、議事録作成などの業務において何のために行うのかという明確な目的がなかったため、非効率的となっていました。しかし、目的を明確にすることで効率的に正しい結果を得られるようになることを意識したいと思います。 転職活動で心掛けることは? 現在、転職活動中で新しい職場を探している中、今後の行動指針として、意思決定に際しては必ず数字の裏付けを吟味すること、目的の明確化を徹底することを心掛けたいです。また、以前に読んだ本や少しかじった統計検定の内容と重なるところが多いことから、統計学を一度学び直したいと考えています。

「良い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right