データ・アナリティクス入門

仮説で挑む学びの実験室

仮説はどう整理する? 仮説を立てる際は、まず複数の仮説を考え、その中から適切なものを絞り込むことが重要です。それぞれの仮説が互いに網羅性を持つように、さまざまな切り口で考えを広げる必要があります。 データは十分かな? 次に、立てた仮説に基づいて分析に必要なデータを収集します。もし手元に十分なデータがない場合は、誰にどのように聞くかを決め、比較のためのデータも合わせて収集しておくことが求められます。 仮説の基本って何? 仮説思考とは、目的(コミュニケーションや問題解決)と時制(過去・現在・未来)を整理しながら、結論を導く仮説や問題解決のための仮説を立てる考え方です。 ギャップをどう埋める? 施策を検討する際は、現状(ASIS)と目標(TOBE)とのギャップ(GAP)に着目し、その差を埋めるために仮説を構築します。メンバーと意見を交わしながら、多くの仮説を出し合い、その中から絞り込みを行い、最終的に必要なデータを集めるプロセスが重要だと感じました。

データ・アナリティクス入門

効果的な分析方法を学び成功へ一歩前進

効果的な分析手法を学ぶには? 分析を行う際に、ただ漠然と進めるのではなく、ステップを考え、ロジックツリーを用いることやMECEを意識した切り分け方を学んだおかげで、より効果的な分析ができるようになった。これからは慣れに頼らず、きちんと目標を持って分析を行っていきたい。 売上向上への試行錯誤とは? 売上が伸び悩む中で様々な試行錯誤を続けているが、前回学んだ「目的」「仮説」「数字の性質」に加えて、今回の「ステップ思考」「ロジックツリーでの展開」「MECEを意識した切り分け」を活用し、過去の数値分析を再度行いたいと思う。 新規施策提案のためには? 新規施策を提案する際には、目標となる部分と仮説、そしてそれがステップ思考になっているか確認し、ロジックツリーを実際に作成して客観性があるかどうかを見極める。また、MECEを意識することで、意味のある分析・評価に繋がっているかどうかを自問自答していきたい。そして、その提案をメンバーや上層部に向けて発信していく予定だ。

クリティカルシンキング入門

問題解決のための視座を磨く学び

課題の意識とは? 課題を意識し、情報を捉えていくことで、問題点を素早く明確にとらえたことが印象に残っている。 今週までに学んだ内容を一つ一つ実行することで、何が問題かを具体的に把握し、その結果具体的な解決策に辿り着くことができた。 課題解決のステップ 現状を認識し、課題を設定して解決することができる。例えば、売上を増やすためや、業界の傾向を把握するために必要な情報を正確に把握し、不足している情報を見つけることができた。また、仮説を立てやすくなり、素早い調査や解決策に到達する助けとなった。 多面的に問題を捉える方法 課題に取り組む際には、関係する相手の捉え方を意識し、ズレが無いよう確認して進めていきたい。課題を達成するためには、多面的に問題を捉え、解決策を考えていくことが重要だと感じた。 また、情報を新たに調べる際には、目的を意識し、逸れないように気をつける必要がある。手段を考える時には、その手段が目的に適っているかを常に意識することが大切だ。

データ・アナリティクス入門

データ分析で見えた学びの本質とは?

データ分析の目的は何か? これまでの学習を振り返り、データ分析において目的が重要であることを再認識しました。自分がどうありたいのか、そのためになぜデータ分析を学ぶのかをしっかりと言葉にすることが大切だと感じました。振り返りの中で、学習した内容を理解したつもりでも、言葉にできなかったり、理解が定着していないことがあると気付きました。 学んだことを実務にどう活かす? 講座全体を通じて学んだデータ分析のプロセスを、実際のお客さまアンケートや業務指標の分析に活用しています。サービス品質向上のために、問題点や原因を見つけ、それに対してどう対策するのかを具体的に見出していきます。 データ分析の具体的な手順は? まずは9月末までに、上半期の各種データの大きな傾向を洗い出し、仮説構築まで行います。その後、10月に入ったら上半期全体のデータを当てはめ、より詳細な分析を進めます。データのビジュアル化も必要なため、Tableauに新たなダッシュボードを作成します。

データ・アナリティクス入門

問いと仮説が導く学びの軌跡

仮説思考の始まりは? 常に目的意識を持ち、問いを立てることから仮説思考は始まります。まずは、何を知りたいのか、どんな結果を期待するのかを明確にしてから仮説を立て、必要なデータを集めて分析を行います。こうしたプロセスが、分析作業において無駄を省き、効率よく目的に近づくための鍵となります。 グラフ作成のポイントは? また、グラフなどの可視化資料を作成する際も、まず仮説や伝えたいメッセージ、そして対象となる相手を意識することが大切です。誰に何を伝えたいのかを明確にして、伝わりやすい構成でグラフを作ることで、情報の意味が正しく伝わります。 新たな発見はどう? さらに、問いを発見する一助として、最新の研究結果や知見に触れることが有効です。たとえば、研究論文を読む機会を増やしたり、仲間から新たな情報を得るなど、日常的に情報収集に努めることが求められます。説明資料を作成する際も、自分が何を伝えたいのかを整理し、論理的かつ簡潔な表現でまとめることが重要です。

データ・アナリティクス入門

目的と仮説で切り拓く新世界

なぜ比較が大切? 今回の授業で改めて学んだのは、「分析は比較なり」という考え方と、目的や仮説を持って取り組む姿勢の重要性です。データ分析の根幹となるこの考え方は、今後の講義や業務の現場で常に意識して取り入れるべきだと感じました。 意見交換で何を得る? また、授業中にパソコンを購入する際の調査項目や、自身が望む条件について話し合った際、他の受講生の様々なアイデアが非常に参考になりました。この経験から、自分の考えに固執せず、複数の視点から意見交換を行うことのメリットを実感しました。 業務で分析のコツは? さらに、データ分析の考え方は業務においても広く応用できると考えています。例えば、ある業務プロセスにおいて不具合の解決を目的としてデータやプロセスを分析する際、目的や仮説を明確にすることが問題解決への近道になると感じています。 普段からデータ分析に携わっている方には、業務で分析を進める中で直面する課題や、その解決方法についてぜひお伺いしたいと思います。

クリティカルシンキング入門

複眼で捉える気づきの瞬間

グラフで何がわかる? 数字の威力とは、単に実数として存在する数値をそのまま見るのではなく、グラフなどの視覚的表現を通じて、数値だけでは読み取れなかった示唆を引き出す点にあります。どこでデータを区切るかでその解釈が大きく変化するため、ひとつの見方に固執せず、複数の切り口から考えることが求められます。 全体像はどう捉える? また、データを複数の角度から実際に分解することで、新たな気づきを得ることができます。分解した結果からすぐに結論を出すのではなく、一度立ち止まり、改めて考察するプロセスが非常に重要です。その際、目的に沿った分析ができるよう、全体で何を捉えるのかを明確にしておく必要があります。 売上推移をどう見る? さらに、売上推移の現状把握や仮説立てにも多角的な視点が活かされると感じました。個人別、チーム別、事業部別といった区分だけでなく、月間、四半期、前年同期比や商材別など、さまざまな分類方法を用いることで、より深い分析が可能になるでしょう。

戦略思考入門

戦略的思考で最速ゴール達成の秘訣

最速到達の秘訣は? 戦略的思考とは、適切なゴール(目的)を明確に定め、それに向かう現在地からの道のりを描き、可能な限り最速・最短距離で到達することを目指すプロセスです。この実現には、どのように進めるかを考え、決定し、実行していくことが求められます。 目標設定のコツは? ゴールは抽象的なものではなく、具体的に設定しなければなりません。設定されたゴールは他者と共通の認識を持つことが大切で、これにより取り組むべき領域を明確にすることができます。そして同時に、必要でないことを選択し排除することも可能になります。こうした考え方を習慣化し、身につけることが重要です。 仮説思考はどう育む? 創発的戦略においては、自分自身のゴールを常に考え続ける意識を持ち、必要に応じて方向を修正しながら明確なゴールイメージを創造していくことが大事です。この過程により仮説思考能力が向上し、根拠を持って物事を多角的に考えることができるようになると考えられます。

データ・アナリティクス入門

結果に響くMECE学びのヒント

結果を重視する理由は? 問題解決にあたっては、要因ではなく結果から考える姿勢が大切であると学びました。また、ロジックツリーを作成する際、MECE(漏れなく、ダブりなく)を意識することの重要性も実感しました。特に、厳密さ自体を目的とせず、第3階層程度で異なる要素を加えても構わないという点は、意外性があり印象に残りました。 メール分析のポイントは? 顧客向けキャンペーンメールの分析では、属性をMECEに分類することで、有意差のある項目を見つけ出すことが可能となります。これにより、意味のある仮説が立てられ、有意な差を検証できるA/Bテストの実施につながります。 属性戦略はどんな風に? 今後は、各属性がどのような方法で、どれほどの期間で入手可能かを確認した上で、MECEに分類し、ロジックツリーで整理することが必要だと考えています。このプロセスを通じ、特に注力すべき属性を明確にし、それぞれに応じたメール配信の戦略へと展開していきたいと思います。

データ・アナリティクス入門

分析が楽しくなる仮説の立て方と実践例

適切な比較対象を選定するには? 分析の本質は比較であり、適切な比較対象を選定することが重要だと学びました。また、問題解決には、「What, Where, Why, How」の4つのステップがあることも理解しました。今後は、ただやみくもに分析をするのではなく、当たり前ではありますが、仮説をきちんと立ててから実施することを心がけていきたいと思います。 秋の実証実験で何を活かすか? 秋から始まる実証実験の結果を、今回学んだ内容を活かして分析していきます。特にアンケート設計を実施する必要があるため、事前に仮説を立て、実証実験で得たいデータが得られるような設計にしていこうと思います。 アンケート設計の考慮点は? 9月中にはアンケート設計を行います。実証の目的や今後に繋げていくために欲しい情報などをよく考えた上で設計を行うことを心がけます。また、今回学んだ知識を忘れないためにも、業務の中で意識的に使用していくことを心がけていきたいと思います。

データ・アナリティクス入門

データで読み解く解決ストーリー

なぜ原因を分解した? 総合的演習では、原因を一つひとつ分解し、必要な要素を紐解いていくプロセスを体験しました。分析作業では、何を比較するのか、またその比較からどのような意味合いや関係性が浮かび上がるのかを考察しながら、目的を明確にし仮説を立て、データによる検証のループを実感しました。 どのステップが有効? また、演習では課題解決のためのステップについて認識を深めることができました。具体的な状況を想定して仮説を設定し、分析内容をストーリーのように組み立てる過程は、プロセス全体を含めた納得感のある解決策となると感じました。こうした流れであれば、職場で共有しても十分に理解を得られると思います。 データで何が分かる? 現状分析においては、データの変化や数値の比較からどのような意味合いが導かれるのかを整理することが大切です。また、問題の原因や理由については、経験や感覚に頼るのではなく、データというエビデンスをもって示すことが求められます。

データ・アナリティクス入門

立ち止まり、未来を見据える分析

学んだことは何? 今回学んだ点は大きく2点あります。まず、分析とは比較する作業であるということです。次に、分析を始める前に目的を明確にし、仮説を設定することの重要性を再認識しました。 反省と再考はどう? 特に後者については、目の前のデータ加工にすぐ取り掛かってしまいがちな自分を反省するきっかけとなりました。作業開始前に立ち止まり、分析の目的や依頼者が何を求めているのかをじっくり考えることが、正確で価値のある分析につながると感じました。 デジタル化の現状は? また、私が働く観光業界は全体としてデジタル化が遅れている現状があります。そのため、行政を中心に予約台帳などのデータを蓄積し、プロモーションや業務効率化に役立てようとする動きが見受けられます。しかし、単に紙の台帳を電子データに置き換えるだけではなく、実際にどのような場面でデータを活用できるのかを想像しながら、必要な項目やデータの粒度をしっかりと検討する必要性を痛感しました。
AIコーチング導線バナー

「目的 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right