データ・アナリティクス入門

多角的発想で拓く学びの扉

仮説の立て方は? 仮説を立てる際には、複数の仮説を提示し、網羅性を意識することが大切です。3Cや4Pといったフレームワークを活用すると、仮説を立てやすくなることを実感しました。また、単に考えただけでなく、様々な切り口からアプローチするよう努めることが重要だと感じました。 データ選びはどう? データ収集については、誰にどのように聞くかが非常に大切です。自分に都合の良いデータだけでなく、反対の意見となる情報も収集するよう心掛けています。一見、目の前にある情報だけで判断せず、目的に沿ったデータであるかどうかを考える重要性を改めて感じました。実際、抽出したデータで本当に検証したい内容が導き出せるかを、常に見直す必要があると考えています。 サービスはどう伝わる? 新しい運用やシステムの活用状況、また提供しているサービスがどのようにお客様に届いているかを分析する際は、まず言葉で仮説を立てることに取り組んでいます。これまで、数値を見ただけで直感的に考え、その立証に必要なデータをどう抽出するか検討していましたが、目的に合致しているのか不安に感じることもありました。そのため、自分にとって都合の良いデータだけに偏らないよう、改めて意識しています。 生産性向上はどう? また、社内の生産性向上施策が実際に効果を上げているかを検証する際にも、フレームワークを用いて複数の仮説を立て、網羅的に検討することを意識しています。抽出したデータが目的に沿っているかを確認した上で、そこからどのような結論が導けるのかをしっかり検証することが重要だと感じました。

データ・アナリティクス入門

プロセスで紐解く成功の鍵

問題の原因は何か? まず、問題の原因をプロセスごとに分けて考える手法は、表示回数、クリック数、申し込み数の比率を提示することで、単に回数が多いという表面的な仮説だけでなく、表示回数に対してクリック数が多い点や、クリックから申し込みへの転換率の高さなど、各段階ごとに比較が可能となり、疑問点が見つかりやすくなると感じました。 対比で何が分かる? また、ある事象を自社とそれ以外といった対となる概念で見ることで、思考の幅を広げ、仮説が出しやすくなるという視点にも共感しました。この方法は、試行錯誤の中で新たな発見につながり、より効果的な改善策を導く手がかりとなると思います。 ABテストの本質は? さらに、ABテストについては、要素を限定して2つの試作品を比較する手法として、検証の目的を明確にし、1要素ずつ慎重にテストを進める必要があると実感しました。特に、環境要因に左右されないように、同時期に実施する点は非常に重要であると考えます。 遅延原因はどう把握する? また、デザイン制作の遅延要因の分析において、プロセスを分ける方法は大変有用だと感じました。理由を分類することで、自分たちの問題なのか、他の要因にあるのかを切り分けながら対策を進められる点に納得しています。 効果的な手法は何か? 最後に、ABテストの進め方を見直す必要性も実感しました。簡易なオンラインテストで漠然とどちらが良いかを判断するのではなく、検証の目的を絞って段階的に実施することで、デザインの改善点を具体的に確認しながら進める手法に大いに可能性を感じました。

クリティカルシンキング入門

分解で見える本質への道

データ分解の意味は? データを多角的に捉えるための分解フレームワークを学びました。このフレームワークでは、①分け方を工夫する、②切り口を変えて考える、③複数の切り口を用いる、④導いた仮説が正しいか自問する、といった思考スキルを活用します。こうした手法により、データを正しく理解し、課題解決へとつなげることが可能になります。また、切り口を検討する際は、目的に沿ってMECEの原則を意識することが重要です。 顧客インサイトはどう? 現在、タスクチームで顧客インサイトに基づくConfidence活動を担当しています。顧客インサイトは、顧客ニーズの特定や戦略策定において重要な情報資源ですが、膨大なデータと多岐にわたる内容により、情報の整理や可視化に課題を感じています。さらに、目の前の数字や表にとらわれがちで、「そのデータから何を導き出すか」という視点が薄れることで、本質的な課題に辿り着けない可能性もあります。 分解スキルの使い方は? そこで、今回Week2で学んだ「分解」のスキルを活用し、データ分析に対する心理的ハードルを下げたいと考えています。まずは来月の顧客インサイト分析資料作成に向け、手を動かしてデータを分解することから始めます。その上で、目的に沿った複数の切り口を検討しながら、自分自身で問いを立て、データを深掘りしていきます。表やグラフなども試行し、情報をいかに伝えやすくするか工夫していきます。最終的には、使用した分析手法と見えてきた課題、そこから導かれる解決策を、チームメンバーに分かりやすく説明できるよう整理するつもりです。

データ・アナリティクス入門

面倒も味方に!工程分解の力

プロセス分解の意義は? 他の研修でプロセスマネジメントを学んだとき、結果管理だけでは検証が十分に行えず、属人化や再現性の低下が生じることを痛感しました。そのため、プロセスを細かく分解し、深掘りすることで問題点を明らかにし、打ち手の検討もしやすくなると実感しています。一方、実際の現場ではプロセスの分解は意外と難しく、面倒だというバイアスもあって浸透しにくい状況もあると感じます。 見直しの方法は? また、プロセスの見直しには、目的の設定と仮説の立案を同時に行うことが重要です。前提の議論が不十分だと、プロセスを詳細に把握する意義も薄れ、問題抽出やプロセス設計が十分に進まなくなってしまいます。 ガントチャート活用は? 仕事においてマネジメントの役割を担う中で、プロジェクト開始時にガントチャートとプロセスの分解を行うようにしています。これにより、進捗状況が可視化され、遅れや抜け漏れの予防につながり、会話の目線も統一されやすくなります。 ABテストの課題は? さらに、ABテストを実施する際には、条件の検討が十分でない場合、Aを終わらせた後にBに着手する傾向が見受けられます。条件の整備が難しいため、目的と現状の把握を明確にし、ギャップ分析で仮説や課題を複数用意、優先順位をつけた上で詳細なプロセス分解を行うことが重要だと考えています。 効果的な評価方法は? 最終的には、共通の評価基準を作るとともに、アクションプランと期限を設定することで、遅れや抜け漏れを防ぎ、目線を合わせたプロジェクト管理が可能になると実感しています。

データ・アナリティクス入門

目標達成の鍵は目的の明確化とデータ分析

目的の設定はなぜ重要? 分析を始める前に、目的の設定が非常に重要だと感じました。ビジネスにおいては、自分たちが他者のどんな課題を解決できるのか、そして自分たちの強み(競合優位性)は何なのかを明確にしてから、目標や目的を設定することが大切です。データ分析はクライアントの課題を解決するための手段の一つであり、データ分析の手法を学ぶこと自体を目的にしないように心がけたいと思います。 生存者バイアスにどう対抗する? また、生存者バイアスに引っ張られないコンサルティング施策の立案も重要です。成功事例を基準に判断し、成功しなかった事象を軽視する傾向があります。そこで、解決策として生存者と非生存者の両方に目を向け、結果全体のデータ分布を分析することが必要です。 複数視点を持つ重要性 複数の視点を持つことも大切です。肯定的な結果だけでなく、否定的な結果も含めて複数の結果を検討します。そのためには、失敗に関するデータを収集し、様々な立場の人たちからフィードバックを幅広く集めることが求められます。 自分の仮説をどう疑う? さらに、自分の考えを否定してみることも重要です。自分の仮説や結論に対して疑問を投げかけることで、新たな視点が生まれます。 プロセスに注目する理由は? 最後に、データを定点観測する際は結果だけに目を向けないことです。最終的な結果だけでなく、その結果に至るプロセスにも注目します。複数のタイムポイントを設定し、結果に至るまでの変動やどの時点で問題が発生したのかをデータに加えるように心がけることが大切です。

データ・アナリティクス入門

データ分析で学ぶ効果的な解決策の作り方

比較方法って何だろ? 「比較」の方法には、代表値を使って比べる方法や、グラフなどで視覚的に情報を整理して見比べる方法があります。 目的は明確か? 定量分析の中で最も重要なのは、まず目的や問いを明確にすることです。目的達成に関連する要素を考えて仮説を立て、その仮説を検証するために必要なデータを集めます。そのデータを基に、インパクトやギャップ、トレンド、ばらつき、パターンといった視点から分析を行います。 手法はどう? 分析のアプローチにはさまざまな手法があります。例えば、ギャップを示すには横棒グラフを、トレンドを示すには折れ線グラフを、分布を示すにはヒストグラムや円グラフを、パターンを示すには散布図を用います。また、数字としては単純平均や加重平均、幾何平均、中央値を用います。データの散らばりを見る際には、分散や標準偏差を参照します。回帰分析やモデル化を用いることで、データの関係性を数式化することも可能です。 因果はどう考える? 重要なのは、相関と因果を混同しないことで、データに基づく正確な分析を行うことです。学校の成績向上や遅刻削減、大学進学実績向上といった課題も、思い込みではなくデータを活用することで、より効果的かつ効率的に解決策を見つけられます。教育関連の文献やデータから情報を読み解く能力を養い、勤務先の学校の課題に対してロジックツリーを用い、仮説を立て、データを集めてグラフ化し、仮説を検証していくことが求められます。特に、度数分布と散布図は非常に有用ですので、積極的に活用していきたいと思います。

データ・アナリティクス入門

小さな目的で大きく飛躍

なぜ目的を明確に? データ分析を始める前に、何のために分析を行うのかを自分自身で明確にすることが大切だと実感しました。たとえば、ただ「売上を上げる」といった大まかな目標ではなく、単価の向上や客数の増加、さらにはリピート客数の増加といった細かな目的に分解することで、具体的なデータの必要性が見えてきます。 どう仮説を組み立てる? 目的が定まったら、その目的に沿った仮説を立てることが重要です。普段の経験から導かれる傾向や、検証に必要なデータの方向性を見極めることで、より実効性のある仮説に繋がると感じました。 範囲の整理はできた? 分析の範囲は、状況の把握、課題の特定、そして最終的な解決策の提示と幅広いものがあります。たとえば、舞台関連の業務で観客のデータやアンケート結果を扱う際も、リピーターの観劇回数を増やすための施策や、特定の公演回における入場率の偏りを解消するための工夫を検討するなど、具体的な目的に基づいて分析に取り組む必要があります。 経験から何を学ぶ? 実際に、目的が曖昧なまま全てのデータ取得を依頼してしまい、大きな負荷をかけてしまった経験もあります。もっと目的を絞って依頼していれば、時間も労力も節約できたと反省しています。 今後の改善策は? これからは、データ収集の前に必ず「何のために」分析するのかを立ち返り、その目的が状況把握なのか、課題識別なのか、または解決策の提示なのかを明確にし、最小単位に分解した目的を一つずつ積み上げながら大きなゴールを目指していきたいと思います。

戦略思考入門

本質に迫る!絶え間ない挑戦の秘訣

本質を理解するにはどうする? 本質を理解することは、簡単に言えても実践は難しいものです。ガリレオが物体落下の法則を発見し、ニュートンが万有引力を見つけました。しかし、それでも本質を完全に捉えているわけではありません。アインシュタインが相対性理論を提唱しましたが、それでも全てを説明するには至らず、未だに何かが欠けていると考えられています。したがって、本質を完全に理解するのではなく、むしろ理解していない可能性を認識し、仮説や定理を受け入れつつ、常に問い直して疑い続ける姿勢を持つことが重要です。この不断の努力は非常に難しく、挑戦を伴います。 時代の変化にどう向き合う? 法律や仕事の慣習も、ある前提条件に基づいています。しかし今日、米中摩擦やAI、地球温暖化などの影響で、その前提条件が大きく変化しています。もはやグローバル最適化は分断化の中で目指すべきものではなく、経済合理性も温暖化の課題を前に以前ほど盲目的に追求されるべきではありません。AIは、「働かざる者食うべからず」という鉄則に疑問を投げかけ始め、多くのことを考え直す時期が来ています。この先もサラリーマンとして働き続けるべきかどうか、定期的にAIと相談しながら検討していきたいと思います。 新しい生き方を探るには? また、ChatGPTのようなDeep Researchの技術も登場しています。この技術を利用して、定期的に収入とリスクのバランスの良い生き方を探り、もしサラリーマン以外の道を選ぶとしたら、どのような方法があるのかを確認していきたいと考えています。

データ・アナリティクス入門

小さな気づきが未来を変える

問題をどう分解する? 原因を明確にするためには、まず問題を各要素に分解することが重要です。たとえば、「目的は何か」「現状はどこに位置しているか」「なぜこの状況になったのか(仮説)」、そして「どのように解決するか」という視点で考察することで、全体像がより把握しやすくなります。 視点をどう変える? また、対概念を活用することで思考の幅が広がります。自分たちの要因にとらわれるのではなく、組織外の要因も視野に入れて見直すことで、従来の経験則や主観に偏らない新しい仮説を導き出すことができます。 PDCAをどう運用する? 仮説を実際に試しながら、少しずつPDCAサイクルを回す手法も効果的です。すべてを一気に実施してから「違った」という状況に陥るのではなく、柔軟に軌道修正を行うことで、スピード感を持った問題解決が可能になります。 要因はどう広げる? 日常的に認知から採用までのプロセスを分解して考察する中で、一部の要因に決め打ちしてしまい、他の可能性に目を向けられなかった経験があります。そこで、仮説を決める前にまず対概念の視点を取り入れ、原因を広く探る習慣をつけるようにしています。 逆の視点は何を促す? 採用集客のフェーズにおけるファネル分析では、前年対比や前四半期との比較、さらには得意な動きに対して何が起きているのかを議論するミーティングを実施しています。このような場では、ひとつの方向に偏りがちな意見に対し、意識的に逆の視点を取り入れることで思考を深め、より正しい方向付けを行うように努めています。

デザイン思考入門

共感と対話で紡ぐ改善の軌跡

他部署の観察は? 前週は実際に担当しているプロジェクトに当てはめて振り返りを行いましたが、今回はより身近な状況に置き換えて考えました。業務上、他部署と協力する場面が多く、時には意見が異なることもあります。そのため、まずは他部署の人たちの行動を観察し、どこに課題があるか、本質的な問題は何かを仮説立てました。その仮説を基に、まず自分の行動をプロトタイプとして変えることにし、他部署の反応を見て改善していくプロセスを考えました。 ミーティングで何が起きた? 次に、ミーティングの内容や他メンバーへの対応から、各人の目的や抱える課題を推測しました。自分だけでなく、上司や自部署のメンバーの行動も変える必要があると感じたため、まず自部署のメンバーに推測した課題を伝え、意見を交わしました。人の行動を変えるためには、相手の行動や感情に共感し、自部署全体での改善に取り組むことが重要だと思います。プロジェクト単位の調整よりも、日々のコミュニケーションの中で、短期間に多くの改善プロセスが求められる点が大きな特徴です。 共通項目は見えた? また、人を観察し、インタビュー内容を通じて共通する項目を見出すことで、課題として定義することが大切だと感じました。インタビュー設計のポイントは、必要十分な対象者から意見を収集できているかどうかにあります。多くの対象者にアンケートを行い、その中から共通の傾向を見出して、インタビュー対象を絞り込むというアプローチは一つの方法として有効です。他にも効果的な手法があれば、ぜひ取り入れたいと思います。

戦略思考入門

フレームワークで戦略の扉を開く

3C分析の全体像は? 各種フレームワーク―3C分析、SWOT分析、バリューチェーン―の有用性が実感できました。まず、全体的な環境変化をとらえる3C分析では、目的の明確化、顧客市場、競合、自社の詳細な分析を行い、その上で戦略を立てる手順が非常に分かりやすかったです。 SWOTで何が見える? 戦略策定においては、SWOT分析が有効であると感じました。商品のポジティブな面だけでなく、ネガティブな面も洗い出すことで、場合によってはクロスSWOTを用いてどのような差別化が可能かを具体的に理解できました。また、バリューチェーンでは、各機能ごとに分けて整理する考え方が、日常で利用しているサプライチェーンの理解を深めるのに役立ちました。 戦略実行の核心は? プロジェクトの中長期戦略や直近の短期課題に対する運用計画を検討する際、なぜその取り組みを行うのか、何を強みに勝ち抜くのかを客観的に上位に説明し、合意形成を図る必要性が感じられました。これにより、ひと・もの・かねを獲得し、技術やビジネスの開発を加速させるための土台が整うと考えます。 仮説と方向性は? 現状の外部環境の変化を、改めて3C、SWOT、クロスSWOTを活用して戦略のメンテナンスを行いながら、試作販売時のバリューチェーン(サプライチェーン)を踏まえて、売価や原価の流れから現仮説の妥当性を確認し、方向修正を図っていきたいと思います。特に、関係部署と連携してこれらのフレームワークを活用することで、よりよい成果が期待できると感じました。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

「目的 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right