戦略思考入門

差別化戦略を考えるヒント

顧客の価値はどう見極める? ターゲットとなる顧客にとって、価値のあるものをしっかりと捉えることが重要です。顧客が魅力を感じなければ、その差別化は意味をなさないからです。また、顧客視点で誰が競合となり得るか、思わぬ業界や業種が競合になる可能性も考慮する必要があります。さらに、実現可能で持続可能な差別化、すなわち他社にすぐ真似されない対策を意識して差別化施策を打ち出すべきです。 営業とマーケティングはどう活かす? 営業においては、顧客が求めているものを把握し、他社の差別化ポイントを考慮しつつ、自社の差別化要素を整理することが求められます。この情報を踏まえた上で日々の営業活動や商談に取り組むことが重要です。マーケティング部門でも、新商品や新サービス・ソリューションを開発する際に、今回学んだ差別化の考え方が役立つ場面がありそうです。 自身の業務にすぐ活かすのは難しいかもしれませんが、自社の商品やサービスを考える際には、顧客にとって価値があるか、他社と比較してどうか(真似されにくいか、既に行われているか、その規模感はどうか)を常に意識する習慣をつけることが大切です。

データ・アナリティクス入門

異なる視点で学ぶビジネス洞察力

どんな発見があった? 演習を通じて、様々な背景や経験を持つ人々が異なる視点でアイデアを出し合う面白さを感じました。今回の学習では、いくつかの前提や仮説があらかじめ定義されていましたが、実際のビジネスの現場では、表面的な事象(例えば売上げの減少)に対して、どのような前提を確認し、どのような仮説を立てるのか、さらにそれをどのように検証していくのかが重要です。この試行の回数も含めたプロセスが必要だと感じました。 現状分析はどう考える? 自社のビジネス分析全般に応用できるフレームワークだと思います。特定のサービスやアドオンの売上げ増減の理由を分析し、その再現性を確認して次の施策立案に繋げる振る舞いは、特に営業系の領域では常に求められています。 カウンター施策は何か? たとえば、前四半期ではある製品の低価格版の失注率が高かったとします。それに対して、他社がSMB向けに競争力のあるキャンペーンを実施していたことが判明し、それに応じたカウンター施策やカウンタートークの検討が必要となるように、課題の発見から分析・施策立案のサイクルを意識的に回してみることが大切です。

データ・アナリティクス入門

データ整理で未来を変える学び

正しい手順はどう? 問題解決の4つのステップは基本的に「What→Where→Why→How」の順で進みます。このプロセスを通じて、あるべき姿と現状のギャップを数値で示すことが重要です。日常の課題解決にはロジックツリーを活用することが一つの手段として有効です。その際のコツとして、過度にMECEを意識するのではなく、感度の良い切り口を見つけることが肝心です。 保険業界の課題は? 具体的な課題として、保険業界でのデジタル化に関連する多くのデータが整理されていない点が挙げられます。この場合、どのようなデータが収集されており、またどのデータが不足しているのかを把握するために、ロジックツリーを用いて整理することが有用です。 施策立案はうまく? データを活用してデジタル化推進の施策やプロモーション案を策定するためにも、まず現状のデータを整理することから始めたいと思います。ロジックツリーを用いることで、デジタル利用率を手続き別や代理店の種別といった切り口で整理し、分析を進めます。これにより、より具体的で効果的な施策につなげることが期待できるでしょう。

データ・アナリティクス入門

比較思考がひらく未来への扉

目的と仮説はどう? WEEK1で学んだ内容を振り返る中で、データ分析は「比較」を基本として行われると再認識しました。まず、目的を明確に定め、自分なりの仮説を立てた上で、必要なデータを収集し、分析を実施することで、目標達成のための示唆や考察が導き出されることが理解できました。 解決手順はどう? 問題解決の過程では、「What, Where, Why, How」といった基本ステップを踏むことが大切ですが、これに加えてロジックツリーやMECE、3Cや4Pといったフレームワークを活用することで、より効果的に仮説が立てられると感じました。 データから何得る? また、数字や数式での集約やグラフによる可視化が分析をサポートし、実数と率の両面からのアプローチが有効であると学びました。同時に、既存のデータだけに頼るのではなく、必要なデータを自ら収集する努力と、都合の良いデータに偏らない分析の姿勢が重要だと痛感しました。実施前後の比較を通じて施策の効果検証を行う場面も多く、今期の採用活動の変革を始めとした各施策の評価に、この学びを活かしていきたいと考えています。

戦略思考入門

フレームワーク活用で視野を広げる

状況分析はどう行う? 広い視野を持ち、高い視座から様々な視点で状況を正しく把握することが重要です。これには、市場環境はもちろん、競合他社、自社の資源や能力についての正確な分析と把握が求められます。そのため、フレームワークを活用することで、より的確な分析や状況の把握が可能となります。また、考えた施策の整合性もしっかりと確認する必要があります。 フレームワーク習得法は? 現状の業務では、直接的にフレームワークを活用する機会は少ないかもしれません。しかし、将来を見据えて、今の段階からフレームワークを使う習慣を身に付けておきたいと考えています。様々な場面でフレームワークを試してみることで、そのスキルを磨いていきたいと思います。 強みはどう活かす? 現業務において特に活用しやすいと感じているのは、バリューチェーン分析です。この分析を業務フローに適用することで、自分たちの強みや弱点を明確にし、高品質な成果物にブラッシュアップしていくことが可能になります。また、その他のフレームワークについても理解を深め、実践的に練習を重ねていきたいと思っています。

データ・アナリティクス入門

試行錯誤で見えた成長のヒント

原因はどこにある? 問題の原因を探る際は、まず全体のプロセスに分解し、どの段階で課題が発生しているかを明らかにします。その上で、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて最適なものに絞り込む手法が重要です。 A/Bテストの意味は? また、A/Bテストはシンプルで運用や判断がしやすいというメリットがあり、低コストかつ少ない工数で実施できるため、リスクを最小限に抑えながら改善を進める有効な手段といえます。 利用状況の課題は? 現在進めているサービスについては、利用者の活用状況を分析し、どのように利用され、さらに活用を推進するためにはどのような施策が効果的かを検討することが課題となっています。そこで、まず現状の利用状況を詳細に把握し、その分析結果をもとに仮説を立て、改善のための施策を検討していきます。 次のステップは? 具体的には、各施策を一つずつ実施し、その結果を確認しながら次のステップへ進んでいく方針です。施策の実施期間は概ね1~2週間を想定していますが、内容とともに期間も適宜見直しながら検討していく予定です。

データ・アナリティクス入門

小さな疑問から大きな発見へ

何故課題意識は必要? 分析の目的や課題意識を明確にすることで、日常の業務だけでなく、普段目にする分析データについても「なぜ?」と考える習慣が身につきました。例えば、ニュース記事で医師不足が取り上げられる場合、その背後にある分析の意図や解決すべき課題を自分なりに考察するきっかけとなりました。 施策評価はどう? また、業務で複数の施策を企画・実行する中で、効果を評価するための分析が重要だと感じています。中長期的な戦略の実行に際し、連続性のある施策を実施するためにも、小さな施策のブラッシュアップを繰り返す必要があると考えています。たとえば、アプリへのログインプロセスを細かく分解し、特に初回ログイン率の向上に向けた分析を進めています。 情報取得は万全? さらに、戦略立案の段階から必要な情報やデータが適切に取得できているかを精査し、取得できていないデータにはタグ付けなどの対応を実施して、常に分析が可能な状態を作り上げています。同じ条件で定期的にログの確認やレポート作成を行う仕組みを整備することで、継続的な定点観測が可能になりました。

戦略思考入門

最短距離で目指す戦略術とは

独自性はなぜ必要? ゴールに向かって最短距離で到達するためには、何をやるか、何をやらないかを選択し、他の人が真似しにくい独自性を持つことが重要であると再認識しました。また、戦略には計画的戦略と創発的な戦略があるという新たな視点も得ることができました。今後は、これらの理解を自分の言葉で他者に伝えられるようになりたいです。 戦略策定の鍵は何? 自部署の下期の戦略策定に関しては、まず上期の状況を分析し、継続することとやめることを選択することから始めたいと思います。各項目ごとにデータを比較し、どこに要因があるのか、なぜそうなったのかを考察します。その後、目的達成のための他の選択肢やルートも検討し、なぜそれを選んだのかをしっかりと説明できるようにしたいです。 本質はどう見極める? また、思考を深めるためには、考えを言語化し、なぜそう思ったのか、それを思う根拠を明確にすることが大切だと考えています。その上で、本当にその選択肢が必要かどうかを再度検討していく習慣をつけたいです。施策から入ってしまう自分の癖を意識し、今後改善していきたいと思います。

クリティカルシンキング入門

データを多角的に分析する力を養う

データの分解にどう立ち向かう? 今回、数値データを扱う際には、データを正確に整理し、重複や漏れがないように分解することを心がけました。例えば、年齢別のカテゴリ分けや売上を単価と数量に分解すること、あるいは工程を細分化することなど、多角的な視点で情報を分類することを意識しました。 顧客分析で重点をどこに置く? このようなデータの分解方法は、ソリューション販売の戦略を構築する際に非常に有用だと思います。特に、顧客層を地域別や人口密度に基づいて分析することで、どこに重点を置くべきかが明確になります。当社製品をどの地域や規模の顧客に訴求するのかを見極めることが、営業エリアやターゲットの設定に役立つと感じました。 営業活動の現状をどう見直す? 現状の営業活動についても、業界全体の数値データをいろんな視点で分解して分析しようと考えています。この分析結果をもとに、現在の営業状況とどのように一致しているか、またはどこでズレが生じているかを見極めたいと思っています。これにより、正しかった施策と改善が必要な点がより具体的に把握できると考えています。

デザイン思考入門

本当の課題はユーザーの声にあり

導入の不安は何? AIなどの新しい技術を自社の業務に導入する際、最適な方法が明確でないことが多く、適当な仮説に頼るだけではユーザーのニーズを十分に捉えられず、導入がうまくいかない事例があると感じました。観察やインタビューを行い、ユーザーが直面している本当の課題を定義することが、根拠に基づいた施策の展開につながるのではないでしょうか。 事前準備は十分? ただし、観察やインタビューを最初に実施する際、聞く内容があらかじめ決まっていないと十分な情報が得られないのではないか、という懸念もあります。一方で、こちらが求める回答にユーザーを誘導してしまう危険性もあるため、フラットな立場でユーザーの本音を引き出し、客観的に分析するプロセスが不可欠だと考えます。 ユーザー視点は大事? 特に、共感を基盤とした課題定義の段階では、ユーザー中心の視点が非常に重要です。業務においては、新しい技術やソリューション自体に焦点が当たり、答えあたりの議論に陥りがちですが、常に解決すべきはユーザーの本質的な課題であることを念頭に置き、施策の検討を進めたいと思います。

クリティカルシンキング入門

疑問が生む戦略の新視点

この施策はどうだろう? 店舗あたりの顧客数の増加や顧客単価という切り口から、ある大手ファストフードチェーンのここ数年の施策を振り返ってみると、理にかなっている点が多く見受けられます。論理的な整理を土台に、骨太なイシュー設定とクリエイティブかつ大胆なアイデアが融合しており、その戦略性に改めて感心しました。 大手の盲点は何だろう? 一方で、どれほど経験豊富な大手企業であっても、時代の変遷に応じた論点の見落としが、直近の転売問題のような大きなトラブルにつながる可能性が示されています。この点から、多面的な視点で論点を整理する重要性について学びがありました。 本質に迫るには? 今後は、イシューそのものに疑問を持つことから始めていきたいと考えています。そもそものイシューのレイヤーが適切であるか、提示された切り口が正しいかを再検証し、「そもそも」と遡りすぎて無駄な時間の重複が生じないかを意識しながら、今向き合うべきテーマとなっているかを見定めたいと思います。同時に、より定量的な分析をもとに、イシューとしての確からしさをさらに高めていく所存です。

データ・アナリティクス入門

営業部門と協働し、データ分析の切り口を探る学び

定量分析で何が重要? 定量分析の重要性と、分析では比較や仮説、目的が重要であることを学びました。実務においては仮説を立てる能力や、分析において適切な切り口を見つけることが求められます。このためには、分析対象に対して強い興味を持つことが大切だと感じました。 問合せ増加の施策検討 現在、私は担当しているWEBサイトからの問い合わせ数を増やすための施策検討を行っています。問合せの生データやサイトのアクセスログなど、使用可能なデータは整っています。また、SFAデータを分析し、2025年度の営業施策を検討中です。こちらについてもSFAデータにアクセスできる状況にあり、今後加工は必要ですが、元データは揃っています。 SFAデータ分析の進め方 まずは、SFAデータの分析から着手する予定です。SFAデータには多くの分析切り口が存在しますので、目的や仮説を明確にするために、いきなり手を動かすのではなく、営業部門の担当者を巻き込むことにします。具体的にはどういった分析が求められるのか、現場で役立つかどうかを相談することが大切だと考えています。

「施策」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right