アカウンティング入門

数字で切り拓く経営の未来

利益の種類は何? 利益には大きく分けて、営業利益、経常利益、当期純利益の3種類があり、売上総利益も押さえておくとよいという点は基本中の基本です。 P/Lの全体像は? P/L(損益計算書)を読むときは、大きな数字―売上高、営業利益、経常利益、当期純利益―を軸にして、全体の概況を掴むことがポイントです。また、分析は比較や対比を行うことで、傾向の変化や相違点を見つけ出す方法が有効です。 異なるP/Lの違いは? さらに、異なるP/Lを比較することで、その構造の違いを確認できます。例えば、業種によっては収益向上の度合いが大きく異なり、業界ごとの特徴が浮き彫りになることもあります。 事業計画の評価は? 事業計画においては、企業コンセプトに沿った施策が展開されているか、投入費用が適正かを総合的に判断する必要があります。効果を上げるためには、アウトプットを増やすか費用を削減するどちらかを選ぶかといった視点も大切です。同業他社のP/Lと比較・対比することで、傾向の相違点を見つけ、新たなアイデアや施策を模索する取り組みも求められます。 皆様の意見は? なお、今回の設問2「原価比率の高い理由」では、個人的な思い込みから適正とは言えない回答をしてしまいました。そこで、皆様はどのように回答されたのか、また、直接利益に結びつかない仕事の性質上、この講習内容をどのように自身の業務に定着させていこうと考えているのか、ぜひ意見交換できればと思います。

戦略思考入門

経験が築く未来の戦略

戦略の略し方は? 戦略という言葉の「戦」を略するという考え方と、実際の日々の業務との間にギャップを感じています。略する際の判断基準は、行動から得た経験をアップデートしていくことにあると考えています。しかし、BtoBやBtoCといった異なる手段で経験値の向上に取り組む企業が同じ市場に相応数存在する場合、結果として経験値の取得件数が多い企業が市場のチャンピオンになる可能性が高いのではないかと思います。この考え方が当てはまらない事例がある場合、戦略構築の要素に技術革新を織り込んでおり、その技術革新を重要な因子として位置付けているという理解でよろしいのでしょうか? 失敗と試行の意味は? 目指すべき目標に対して最短ゴールを模索する中で起こる大きな失敗や、幾度かの試行錯誤は、個人レベルでの取り組みに比べ、一定規模の組織が実行する際には、膨大な意識改革や人事評価制度の見直しといったハードルの高さを実感します。それでも、この課題は現代ビジネスにおいて非常に重要なテーマであると感じています。 共感育むには? 現代の激しく変化するビジネス環境と技術革新の中では、できるだけ多くの自社メンバーが同じ時間軸で共感をしながらスキルアップしていくことが理想です。その結果、組織全体のスキルの底上げが進み、市場にしっかりと向き合える体制が維持できると考えています。人事評価制度やインセンティブといった従来の施策以外で、いかに共感を得られるかという点が一つの疑問として残っています。

クリティカルシンキング入門

データを分解して新しい発見を得る方法

少ないデータを分解する方法は? 少ないデータを最初に見たとき、「わかることが少ない」という印象を持ちました。しかし、データを分解して考えることで、新たに見えてくる情報があることを実感しました。求める情報に対して、適切な分解方法を考えることができるようになったと感じています。 新しい気付きが得られない時の対処法は? また、分解しても新しい気付きが得られない場合でも、それは失敗ではなく、新たな学びであるという考え方に勇気をもらいました。この経験を経て、MECEを意識してデータ全体をさまざまな視点から分析し、手を動かして新しい情報を得ることを心掛けています。 具体的には、顧客データを分析し、仮定していたペルソナとのギャップを発見したり、イベントの参加アンケート結果を基に告知と実際の内容の違いを分析したりしています。また、施策の結果を数字だけでなく、さらに深く分解し新たな情報を提示しつつ判断しています。データを他のチームに依頼する際には、目的や期間を明確に伝え、無駄なデータのやり取りを減らすことを意識しています。 どんなデータが必要か整理するには? 「どんなデータがあれば知りたい情報が得られるのか?」をまず整理し、実際に手を動かしてデータを分解しグラフ化することで、多くの新たな発見が得られます。アンケートを行う際には、逆算して負担を軽減する項目や回答方法を検討し、Excelなどの利便性の高いツールを活用して効率的にデータを見られる環境を整えています。

マーケティング入門

セグメンテーションで未来を切り拓く

強みの組み合わせで差別化を図るには? 勘所を探す際のポイントとして、「強みを複数組み合わせて差別化できる領域を探す」「利用場面を具体的にイメージし、顧客にとっての価値を見つける」「ターゲットと提供価値がつながるプロモーション施策を打つ」という3つがあります。これらは、自社ビジネスだけでなく、自己ブランディングでも役立ちそうです。 セグメンテーションとターゲティングとは? セグメンテーションやターゲティングを理解できたことは大きな進歩です。今までは漠然とした切り分けしかできませんでしたが、セグメンテーションの切り口やターゲティングの評価基準である6Rを活用していきたいです。ポジショニングを決める際には、2軸に絞って顧客目線や客観的な視点で判断することを心がけたいです。 どのように業務効率化を実現? 私はバックオフィス業務に従事しているため、本部や営業店舗が顧客になります。そこで学んださまざまな変数を使い、効率的に切り分けて考えてみたいです。複雑な状況でも、「ないない思考」に陥らず、シンプルに分析できるよう、フレームワークを活用していきたいと思います。 STPをどのように活用する? セグメンテーション、ターゲティング、ポジショニング(STP)を明確にする習慣を身につけたいです。普段目にする広告や商品を見て、それらのSTPを予想し、その考え方を身につけていきたいです。特に、訴求ポイントの2軸を感じ取れるように意識していきたいと思います。

データ・アナリティクス入門

まずは基本!仮説で切り拓く学び

仮説はどのように考える? 仮説を考える際には、複数の仮説を立てることと、それぞれの仮説に網羅性を持たせることが重要です。また、反論を排除するためにも必要なデータを集め、仮説同士を比較検証できるようにすることを忘れてはいけません。 仮説定義はどうなってる? ビジネスの現場における仮説とは、ある論点に対する仮の答えを示すものです。仮説は、目的に応じて「結論の仮説」と「問題解決の仮説」に大別され、時間軸によって仮説の内容が変化します。 戦略はどう変化してる? マーケティングにおいては、プロモーションの戦略がIT関連の技術発展によって大きく変動する現状を踏まえ、トレンドを正確に抑えることが重要です。同時に、顧客満足度を非常に高いレベルに引き上げることでブランド価値を高めることが求められます。 実施前に何を検証すべき? 実際、分析の段階で仮説を立てずに作業してしまうことが多いと感じました。そのため、より網羅的に情報を確認するためにも、クリティカルシンキングを意識することが有効だと実感しています。これまでフレームワークの活用に対して懐疑的な面もありましたが、まずは基本に立ち返ることが大切だと感じました。 新施策の仮説検証は? 新しい施策を進める際には、4Cの視点を取り入れて仮説を立て、その仮説に基づいて必要なデータを収集することが有効です。データ収集の際は、自己のバイアスに捉われることなく、網羅的な情報収集を心がけるよう努めています。

データ・アナリティクス入門

問題解決の視点を広げる大切さ

プロセスの問題をどう特定する? プロセスの問題を明確にするためには、各プロセスを分解してそれぞれの率などを分析し、どこに問題があるのかを確認することが有効です。また、仮説を考える際には内部要因と外部要因の両方を考慮することで、視野を広げることができます。 A/Bテストの成功法は? A/Bテストを行う際は、一つずつ要素を変えて精査することが重要です。時期的な要因に左右されないためにも、同じ期間に同様のターゲットに対してランダムに行うのが良いでしょう。複数の要素をテストしたい場合は、別の手法を検討する必要があります。 WEB広告でのA/Bテスト活用法 WEB広告においてもA/Bテストを活用し、広告の精度を高める努力を続けますが、時期や施策ごとに単に更新するだけではなく、施策展開から販売までのプロセスを分解し、どこに業務プロセスの問題があるかを分析することが重要です。 効果的な問題解決の取り組み方 解決策を決め打ちするのではなく、「What」「Where」「Why」「How」の各プロセスを意識的に取り組むことが求められます。問題解決のプロセスを意識的に取り組み、定着させることが必要です。 チームで知識を共有するには? また、WEEK5の内容をチーム内に共有し、良い切り口を持てるように常にアンテナを張り、これと思ったことを書き留めることも大切です。年末に向けて打ち出す販促施策においても、A/Bテストを試みたいと思います。

アカウンティング入門

価値を見極める購買戦略の秘訣

価値提供の明確化が重要 事業を進める上での目的や価値提供の具体的な内容を明確にし、それを維持するための施策を考えることは重要です。特に高い利益率の追求ばかりに目が行くと、提供する価値を削ることになりかねません。そのため、常に「提供したい価値とは何か」を明確にし、ぶれないように心がけることが求められます。 コスト削減と品質の両立は可能か? 現在、自動車部品の購買担当として、使用する部品や材料のコストをどれだけ抑えられるかが、自社の収益に大きく影響します。しかし、ただ安価なものを追い求めることは、サービスの質の低下につながる可能性があります。安価な調達方法を検討する際には、その選択が提供価値の低下につながっていないかも視点に加えて、慎重に検討する必要があります。 日本製と中国製の選択基準は? 例えば、ある商材において、質の高い日本製の材料と同一素材の廉価版である中国製の材料の適用を検討することがあります。価格面で中国材が有利であっても、『耐久性』やその他製品の品質が損なわれないかどうかを、十分に検討しなければなりません。 提供価値と価格のバランスをどう考える? 顧客に対して提供したい「価値」を明確にすることの重要性に気づき、それを深堀り検討してみます。それに対し、自社目線とサプライヤー目線の双方から考えることが必要です。さらに、自社や関連するサプライヤー、競合他社との価格と価値のバランスを考慮しつつ検討してみることが大切です。

データ・アナリティクス入門

納得の4ステップで未来へ

授業で何を学んだ? ライブ授業では、「What(何が問題か)」「Where(どこが悪いか)」「Why(どうして悪いか)」「How(どのように解決するか)」という4つのプロセスを学びました。これらのステップは非常に腹落ちし、納得のいく内容でした。 自身の弱点は何? 私自身、最初のアウトプットができないという弱点があるため、このプロセスを活用し、解像度を上げる工夫をしていきたいと考えています。 業務の課題を何で解消? また、現在担当している人口減少対策の業務において、要因が複雑でどこから手を付けるべきか悩むことが多く、市町村担当者を巻き込んで一緒に課題を整理することの重要性を実感しました。 分析はどう進む? 具体的には、まずはMECEの視点やクリティカルシンキングの手法を用い、何に取り組むべきかという問いの質を向上させるための課題洗い出しを進めます。さらに、学術研究論文などを参考にしながら、さまざまな仮説を立て、具体的な解決策を検討していく計画です。 計画の次の一歩は? 今後は、6月下旬からの市町村訪問に向け、どの課題をテーマとして設定するかを明確にするとともに、必要なデータを集めていきます。管内市町村の総合計画や、人口減少対策の総合戦略を読み込み、どの課題が重要視され、どのような解決策を試みているのかを丁寧に把握し、U・Iターン者や若年層の視点も取り入れて足りない部分を洗い出し、施策の強化ポイントを明確にしていくつもりです。

データ・アナリティクス入門

理論を実践に変える学び

講義はどう実感? これまでの講義やワークを振り返る中で、思考が体系化され、頭の中がすっきりと整理された印象を受けました。いくつかのフレームワークについては既に知識がありましたが、実際の事例に当てはめて考えることで、ただ「知っている」段階から実際に使えるかどうかが別問題であることを実感しました。何度もアウトプットすることの大切さを改めて感じました。 契約データの見方は? また、各種施策を検討する際には、過去の契約データを分析する場面が多くあります。その際、ロジックツリーを用いて漏れなくダブりなく問題を整理し、複数の仮説を立てることの重要性を再認識しました。特に、契約データの項目選定や社外データの活用といった、目的達成に必要な分析手法を実践する意義を感じています。 SQL学習の計画は? 今後は、社内データを正確に取得するためにSQLの習得にも力を入れます。具体的には、オンライン講座を活用して4月から6月頃までに学習を完了させる予定です。 手書きの効果は? さらに、ロジックツリーやその他のビジネスフレームワークについては、パソコン上で作業するのではなく、あえて手書きで取り組み、自分の中に定着しているかどうかを確認しながら実践していきたいと考えています。 アウトプットをどう伸ばす? 実践的なデータ分析のアウトプット力を強化するため、関連する書籍や講座を活用し、9月までに数多くのアウトプットを経験して実力アップを目指していきます。

データ・アナリティクス入門

比較が拓く新たな自己発見

比較ってどう進める? データ分析の根本は比較にあります。分析を行う際には、目的に応じた条件を揃えた比較対象を設定することが大切です。目的が明確であれば、適切な比較対象の選定が可能となり、分析の精度も向上します。 直感の表現は? また、直感的な感覚を自分の言葉で言語化することも重要です。「なんとなく」という漠然とした感覚を具体的に説明できるようにすることで、分析結果に説得力が生まれます。 定性定量はどう? 定量・定性の両面のデータを活用し、定量データの尺度の違いや特徴を把握することも必要です。さらに、分析の目的に合わせた可視化―例えばパーセンテージ表示やグラフ化―を行うことで、結果をより理解しやすく提示することが可能となります。 分析手順は何? データの加工や分析のプロセスでは、まず目的の確認と仮説の立案を行い、その後に結論へと導く一連の手順が求められます。この流れをしっかりと実行することで、効果的な分析と説得力のある結論が導かれます。 活用場面で何をすべき? 具体的な活用場面としては、営業やチームから依頼された市場データの提供、他社への施策提案、自社商品の価格検討などが挙げられます。これらの場面では、まず目的や期日などのゴールを明確に確認し、必要な条件を的確にヒアリングすることから始め、比較対象の設定、データの収集・加工・分析を実施します。最後に、分析の目的に沿った可視化手法を用いて、結論を提供することが求められます。

データ・アナリティクス入門

データ可視化で見えてくる新たな発見

分析の視点を再確認する方法とは? 前回の学びから、分析における視点として5つの要素、すなわち「インパクト」、「ギャップ」、「トレンド」、「ばらつき」、「パターン」に分けて考えることが有用であると再確認しました。数字をただ眺めるだけでは気づきが得にくい場合でも、目的に応じた適切な可視化を行うことで数字の意味を見出すことが容易になります。特に、可視化は自分の理解を深めるだけでなく、説明相手の理解や認識の統一にも役立つと感じました。 平均の取り方をどう活用する? 普段の仕事でもデータを扱っており、どのような代表値を用いてその数字の塊を特徴づけて解釈するかを意識していましたが、この学びを通じてさらに細かな平均の取り方を再認識しました。特に幾何平均の活用については、施策立案や来期戦略、予算作成の際に大いに役立ちそうです。例えば、年間の応募推移を過去5年間にわたって見たときに、どのようにトレンドの推移を適切に抽出するかなどを具体的に考えることができました。 日々のKPI管理で使える可視化手法は? また、日々のKPI管理についても適切な可視化が求められます。現在は折れ線グラフで推移を見ていますが、前年比や積み上げグラフなども必要かもしれません。ユーザーの行動を分析する際には、ヒストグラムを活用して傾向を掴むことも考えています。具体的には、インストールからコンバージョンまでの期間別ユーザー数を把握することで、より詳細な分析が可能になると考えています。

データ・アナリティクス入門

データ分析をDX推進の鍵にする方法

フレームワークをどう活用する? what-where-why-howのフレームワークで考えることが非常に印象に残りました。これを会社でよく言われるPDCAサイクルに当てはめて考えてみました。P&Cの部分はwhat-where-why-howに、D&Aの部分は施策と解決策の実行に相当します。 仮説思考の真価は? 特に仮説思考はwhere→why→howの部分に適用できると思います。仮説と結論をセットで考えることで、無秩序な分析を防ぎ、限られた時間と資源で施策を考える際に有効だと感じました。 更に、単なるデータ集計とデータ分析は異なるという点についても再認識しました。 データ分析をどう実践する? 私は現在、メーカーの物流子会社で働いており、様々なシステムから日々多くのデータが蓄積されています。しかし、DXを推進すると言いつつも事なかれ主義が根強く、なかなか進展しないのが現状です。今回学んだwhat-where-why-howの流れでデータを分析し、グラフ化して社内で共有することで、的を絞った改善策の検討に役立てることができると思います。 目標達成に向けた分析とは? 具体的には、何を達成したいのかを明確にし、日々蓄積されるデータから目的に合ったデータを選定して分析し、情報として活用します。その結果を「わかりやすく伝える」ことを念頭に置き、周囲に共有して活動に巻き込み、活動の方向性を決める役割を担いたいと考えています。

「施策」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right