データ・アナリティクス入門

問いから始まる分析革命

分析に必要な問いは? データ分析の本質は、単に数字を扱う技術だけでなく、適切な問いを立て、ストーリーを構築する力にあると改めて認識しました。特に「What-Where-Why-How」のフレームワークは、やみくもな分析を避け、目的に沿った思考を進めるための強力なツールであると感じました。また、平均値だけでなく、分布やばらつき、最頻値を確認する重要性や、積み上げ棒グラフやヒートマップといった視覚化の工夫により、データの解釈が一層深まることも印象的でした。 仲間から何を学ぶ? さらに、仲間と学び合う中で、異なる視点に触れることで自分の思考の幅が広がることを体感しました。その結果、クリティカルシンキング、プレゼンテーション、マネジメントといった周辺スキルの必要性も再認識することができました。今後は、学んだ内容を単なる知識として終わらせず、実務に生かし、共有し、継続して取り組むことが課題であり、楽しみでもあります。 組織活用のヒントは? 学びを個人だけに留めず、組織全体で活用するために、顧客体験向上では利用者属性や満足度のデータを基に、ターゲット毎にプランやサービスを改善していく考えです。具体的には、ある層に合わせた柔軟な契約プランや、別の層に対してサポート体制を強化するなど、感覚だけでなく根拠あるデータに基づいた意思決定を行い、施策のインパクトを最大化していきます。 研修で課題解決は? また、人材育成と組織への浸透を図るために、「What-Where-Why-How」やクリティカルシンキングといったフレームワークを研修に取り入れ、課題解決力の強化を目指します。分析結果をチーム内で共有し、「なぜ?」と考える習慣を根付かせることで、データがストーリーとして伝わり、現場が納得して能動的に取り組む環境作りを推進します。さらに、部署内での継続的な共有やディスカッションの場を設けることで、視点を広げる取り組みを続けていきます。

データ・アナリティクス入門

検証の軌跡が未来を変える

原因って何が影響する? 問題の原因を追究するためには、対象となる現象が起こるまでのプロセスを細かく分解し、各段階の要素を把握する手法が有効であることを学びました。また、複数の可能性を網羅的に洗い出し、根拠に基づいて最適な解決策を絞り込む方法も身に付けることができました。 検証はどのように進む? 仮説検証の手法としてのA/Bテストにおいては、検証対象の効果を正確に判断するために、できる限り条件を揃えた同一環境下で比較することの重要性を再認識しました。これにより、得られる結果がより信頼性のあるものになると実感しました。 なぜ離脱が発生する? さらに、ユーザーの利用過程をプロセスに分解し、どの段階で離脱が発生しているのかを探るファネル分析についても、具体的な事例を通じて理解を深めることができました。一方で、実際にA/Bテストの結果をもとに今後の方針を決定する際、テスト実施自体に対する関係者からの合意や納得を得る難しさを改めて感じる機会もありました。 分析のポイントは? そこで、What、Where、Why、Howの各ステップに沿って分析を進める重要性を認識しました。特に、WhyとHowの部分にスムーズに入れるよう、まずはWhatとWhereについて関係者全員で共通認識を持つことが不可欠です。また、総合演習では「満足度が下がっている」という結果だけに飛びつかず、どこに問題があり、なぜそのような状況に至ったのかを分解し、分析・判断することの大切さを学びました。 具体策はどうすべき? 具体的には、以下の点が重要です。まず、What、Where、Why、Howの各段階に沿って、問題を丁寧に分解すること。次に、不正解の仮説は存在しないという前提に立ち、考えられる仮説を2~3案以上、網羅的に検討する癖をつけること。そして、A/Bテストやファネル分析を通じて仮説の正否を検証し、施策の精度向上につなげることが大切だと感じました。

戦略思考入門

戦略思考で日々の選択を賢くする

戦略思考、再確認は? 戦略思考の本質を改めて学び直し、意識すべきポイントを整理しました。基本的な内容ですが、今の私にとってはこれが出発点であり、この思考を基に物事を検討することで学びを活かせると感じました。 戦略の基本は? まず、戦略の基本定義として、目的を明確に定めることが重要です。そして、目的達成のための最短経路を設計し、利用可能なリソースを把握することが求められます。 目的から逆算は? 次に、戦略的アプローチの重要性を認識する必要があります。何となく始めるのではなく、目的から逆算して行動を設計し、効率的なルートを事前に検討します。 実践の鍵は何? 実践のポイントとしては、目的を明確化することが必要です。何を、いつまでに、なぜ達成したいのかを明確にします。また、リソースの把握では利用可能な人材や時間、予算を考慮し、最適なルートを設計します。複数の選択肢を検討し、コストパフォーマンスを評価し、リスク要因を分析します。 戦略、日常に使える? この戦略思考はビジネスシーンのみならず、プライベートな目標設定や日常的な意思決定にも適用されます。その結果、無駄な労力の削減や意思決定の質の向上、目標達成の確実性の向上が期待できます。 目標、どう導く? どんな小さなことでも、長期的な大きな仕事でも、今回学んだ戦略思考を基に仕事を進めます。目的の設定をまず行い、安易に結論を出さずに問いを立て続け、視点を変えて精度の高い目的を導くようにします。また、リソースには限りがあることを意識し、時間を区切って効率的に進めることを心がけます。 実践の効果は? まずは実践です。学んだことを小さなことでも仕事にアウトプットし、学習ノートを作成していつでも読み返せるようにしました。これを基に日々の業務に取り掛かる前に確認することで、戦略思考の精度を高め続けます。

戦略思考入門

戦略的思考で未来を描く私の挑戦

戦略思考の重要性とは? 「戦略とは何か」「戦略的に考えることで何が得られるのか」という問いを深く考える機会を持てたことは、私にとって大きな学びでした。それまでは戦略思考を漠然と身につけたいと思っていましたが、戦略思考がどのような要素から成り立っているのか、なぜ自分がそれを重要視するのかを言語化する中で、自分は特に「目指すべき適切なゴールを定める」ことが苦手であると気づきました。この気づきにより、今後の学習を通じて「適切なゴール設定」を向上させることを目指すべきだと明確になりました。 戦略思考を業務でどう活かす? 現在、製薬会社の社内外の問い合わせや製品資材作成を担う組織を統括する立場である私は、日々の業務に戦略的思考を活かせると考えています。具体的には、コールセンターの顧客満足度評価に基づく改善計画の策定と実行、新製品の上市に備えた新しい組織体制の準備とリソースの最適配分、生成AIなど新システムの導入、メンバーとの目標設定や日常業務の相談などが挙げられます。 目的を見失わないためには? しかし、議論が進むにつれ、目的を見失いがちになることがあります。なぜそれを行う必要があるのか、何をやるべきか、その決定は本当に達成可能なのか、それは顧客が求めているのか、費用対効果や将来的な影響はどうか、最短・最速で達成できるのかといった問いを常に持ちながら、適切なゴールを定めることが、これらの問いを考える手助けになると考えています。 思考を視覚化する利点は? また、多角的に考えるため、影響を与える要因を思考の中だけでなく書き出して言語化することを徹底しています。視覚化することで自分自身の考えも整理されやすくなり、相手との議論の際にも議論がスムーズに進むと実感しています。こうして影響を与える要因について考えると、どこが抜けているのかにも気づきやすくなると思います。

データ・アナリティクス入門

STEP活用で見える問題解決の極意

分析と課題の関係は? 今週の学びでは、これまでの講義全体を振り返る中で、改めて以下の点の重要性に気づきました。まず、分析とは比較を通じて違いを明確にする作業であること。そして、問題解決には「What(何が問題か)」、「Where(どこに問題があるか)」、「Why(なぜ問題が起きたのか)」、「How(どう対応するか)」という4つのSTEPがあり、この順に検証することで、チーム内で適切な意思決定や対応策の精度向上につながるということです。また、仮説思考の重要性も学びました。一方で、仮説にとらわれず現状のデータから何が分かるのかを整理する必要性も感じました。 目的は本当に何? これまでデータ分析=分かりやすく加工する技術(プレゼンテーション資料や表計算ソフトのスキル)と捉えがちでした。しかし、本講座を通して、何よりも分析する「目的」が重要であり、見せ方や手法だけでなく本質に気づくことができました。 データから何が見える? 現業では直接データを加工する機会は少ないものの、提示されたデータから「なぜこの課題意識を持ち、どのように分析したのか」という分析者の視点を意識して読み解くことが求められています。また、クリエイティブ業務においては、どうしても「HOW」から入りがちなチームメンバーに対し、この問題解決のSTEPを活用して共通の目線を持つことが有効に感じられます。 仮説も大切なの? さらに、新規事業の立案時にも、従来のフレームワークに加えて仮説思考を取り入れ、「データを分け、整理し、比較する」という基本事項を怠らず進めていく重要性を実感しました。 実践はどう進める? 実際に問題解決のSTEPを業務で取り入れ、チーム内での情報共有や課題の整理を通じて、よりシャープな打ち手(How)を見出すための一助になっていると感じています。

クリティカルシンキング入門

イシューで会議をもっと成果にする方法

最初の問いは何? 今何を考えるべきか、最初に答えを出すべき問い(イシュー)を明確にしてから考えることが大切です。イシューは具体的な問いの形にし、共有することで同じ問題について皆で考えることができます。問いが間違っていると、いくら考えても良い案にはなりません。考えている最中や話している最中にも、適宜イシューを思い出し意識し続けるべきです。 会議で何を伝える? 業務の進捗を共有するための会議や、業務で何か動いてもらうための会議、社内で試験的に進めているアイデアソン、今後の業務計画の作成などの場面で、イシューの概念を活用できます。複数人による意思決定の場や、一人で次に何をすべきか考える時にも役立つでしょう。 会議の目的は? 会議を行う際には、まず会議の目的を明確にし、その日のテーマや出すべき答えをしっかり共有してから開始します。会議の途中でも、適宜イシューを振り返る時間を設けることが大切です。試験的に開始されたアイデアソンに参加する際も、何のために実施するのか、何を考えるべきなのか、ゴールはどこかをしっかり共有してから始めるよう、関係者としっかりコミュニケーションをとりたいです。 なぜ新規事業か? 新規事業提案のために、課題とその解決方法を考える時には、まず「なぜ新規事業を提案するのか」という点を考えるべきだと思いました。何となく考え始めるのではなく、活動の目的をしっかり意識することから始めたいと思います。提案が通った際も、前進する際には初心を忘れず、イシューを意識し続けます。 解決策はどう? 課題解決方法を考える時には、課題をしっかり分解し、複数の視点から捉え、対応策を考えたいです。チームで進めることになる場合は、同じ目標を持って進むためにも、課題や向かうべき方向をしっかりと共有することが重要です。

クリティカルシンキング入門

伝わる設計力で心を動かす

スライド表現の工夫は? 今回の学びを通じて、スライドは単に情報を整理するだけでなく、伝えたいメッセージをどう設計し、視覚的に届けるかを考えるための道具であると実感しました。言葉の選び方や装飾の工夫、情報の順番、グラフの形式など、細部が伝わりやすさに大きな影響を与えることに気づきました。 構造思考の必要性は? 一方、実務では、コンテキストや課題構造を捉えた構造化思考モデルを用いて議論することが多いため、思考の流れや全体像を相手と共有することが求められます。今回の学びは、そのような場においても「何をどう見せると伝わるのか」という視点を意識するヒントとなりました。 伝わる力強化の秘訣は? 今後は、スライドと構造化思考モデルの双方に共通する「伝わる設計力」をさらに高め、意思決定を支えるための視覚的な意味の構造を効果的に伝えるビューモデルの設計に取り組んでいきたいと考えています。具体的には、課題の背景や構造、検討すべき施策、期待されるインパクトを整理し、キーメッセージを短く明確に表現することを第一歩として、経営層との対話に活かせる資料作りやワークショップの設計を進める予定です。 提案資料やワークショップの設計においては、「このコンテンツで意思決定者にどんな行動を促すのか」「どのような構造で納得を得るのか」を明確にした上で、ビューの順序設計や視線の流れ、強調すべきポイント(色、太字、枠、矢印など)を意図的に取り入れていきます。特に、判断の分かれ目となる構造や施策の選択肢を、比較しやすい形でビジュアル化し、なぜそれが妥当なのかを自然に伝えられるよう心掛けます。 来週予定している経営者向けのワークショップでは、重点戦略の構造化や目標設定の意図をいかに伝えるかをポイントに、今回の学びを反映したビューモデルの設計と実践に挑戦するつもりです。

クリティカルシンキング入門

思考のクセを知る、新たな学びへの道

ロジカルシンキングの重要性は? ロジカルシンキングが必要な理由の一つに、思考に癖や無意識においてしまう前提があることが挙げられます。自分の思考の癖を認識することで、なぜそう考えるのか、他に考えることはないのかと問い続けることが可能です。これにより、相手が本当に言いたいことを理解し、客観性のある意思決定へとつなげることができます。 どうやって目的意識を保つ? また、常に目的を意識することが重要です。目指すゴールを意識することで、無駄な思考を排除し、論理的に整理して考える力が向上します。 クリティカルシンキングの実践法は? 業務効率化の計画や施策の立案、要件定義においては、クリティカルシンキングが大いに役立ちます。この思考法は、デスクトップ調査やディスカッション、ドキュメント作成など、さまざまな場面で活用可能です。あるべき状態とのギャップを見極め、その状態にするために必要な行動を具体的に考え、それが本当にゴールに繋がっているのかを確認するためのベースとして、共通認識や合意形成を進める助けとなります。 エクセル作業の注意点は? エクセルなどでの作業においても、目的とゴールを意識することが大切です。何のために、どのようなことを、いつまでにどの程度まで仕上げるのかを考えた上で、作業に取り組むべきです。作業そのものがゴールではないことを忘れないようにしましょう。 日常での思考の問答は? 日常の中で、経験則に頼って簡単に答えを出そうとしていないか、常に自分に問いかけるように心がけます。自分自身の無意識の前提や思考の癖を認識し、納得感や客観性を得られるまで「なぜ」を問い続けることが大切です。そして、感情論やパワープレーに逃げ込むことなく、論理的に考え続ける姿勢を保ちましょう。

データ・アナリティクス入門

ロジックツリーで解決策が見えた!

問題解決の基本ステップは? 問題解決は段階的に考えることが重要です。まずは「What」として、何が問題なのかを明確にし、あるべき姿と現状を把握し、これについて周囲と合意を取ります。「Where」では問題がどこにあるのかを特定し、「Why」ではなぜその問題が起きているのかを分析します。そして「How」では、問題をどのように解決するかを考えます。 ロジックツリーで何が変わる? ロジックツリー(MECE:もれなく・だぶりなく)は、問題を解決する際のWhere、Why、Howの各段階で有効に活用できることがわかりました。これを様々なシーンで使えるように、もっと積極的に取り入れていきたいと考えています。 問題をどう分解するか? 問題を分解する方法には、層別分解と変数分解(掛け算)の2つがあります。これまで意識して使っていなかったので、状況に応じてこれらの方法をうまく引き出せるようにしたいです。 共通認識をどう持つ? 計画やあるべき姿が明示されていないケースが多くあります。このため、まずロジックツリーを使って問題を以下のように切り分け、可視化し共通認識を持つことが大切です。解決策を提案する際にも、すぐに実現可能なことだけでなく、様々な解決案を考慮し、長期的に良い方向に進むための基礎となる資料を作成していきたいです。 MECEをどう活用する? また、数値データでない分析においてはMECEを意識し、作業に取り掛かる前にWhatやWhereに時間をかけることが重要です。変数分解も選択肢として考慮し、「分析の本質は比較であり、意思決定のためのものである」という点を忘れずに実践していきます。今後は部下に教えることも視野に入れ、データを整理しながら作業するように心がけたいと思います。

データ・アナリティクス入門

共通認識が導く納得の意思決定

なぜ納得できない? これまでのGAiLでは、解説を読むたびに納得感を得られる部分が多かったのですが、今週はどうしても納得できない点がありました。設問3のデザイン変更の方法案について、解説では「コスト」「スピード」「意思疎通」に点数を付け、その結果として最適なものは「案3」とされていました。しかし、私が認識していた各指標の点数が異なっていたため、別の案を回答してしまいました。 共通認識は必要? この経験から、意思決定支援を行う際には、分析結果に基づいて「How」を考える前提として、共通認識(認知の歪みがない状態)を持つことが非常に重要だと感じました。たとえ分析結果から具体的な手法が導かれたとしても、共通認識が欠けていれば相手に納得感を与えるのは難しく、実際の実行段階で問題が生じる可能性があります。そうした意味で、仮説をしっかりと研ぎ澄ますことが大切だと理解しました。 A/Bテストはどう見る? A/Bテストについては、ダイレクトリクルーティングにおけるスカウト送付の場面で有用と考えています。たとえば、①スカウトメールの件名、②本文、③添付の求人票といった要素で比較検証を行う方法が挙げられます。一方で、各グループ間の介入の違いはできるだけ絞る必要があるため、比較対象が不必要に増えないよう、明確な仮説に基づいて取り組むことが求められます。 どう候補者を絞る? また、ほとんどの場合、データサイエンティストという職種名で求人票が作成され、スカウトメールが送付されているため、まずは候補者を①データサイエンティストとしての経験の有無と、②データサイエンティストを希望しているかどうかの2点で分類し、返信率への影響を検証していきたいと考えています。

データ・アナリティクス入門

小さな仮説が大きな発見に

なぜデータを分ける? まずは、分析はデータを分けて整理するところから始まると感じました。各要素や性質の細部まで明確に把握してから整理することが、効果的な分析につながると実感しています。また、比較対象や基準を設け、データを比べることで意思決定を支援する効果にも大きな意義があると印象に残りました。 どこを重点分析? 動画学習では、帰還した戦闘機の被ダメージ部分とそうでない部分、さらにその他の箇所について、どの部分の分析が有用なのかという問いかけがありました。帰還しなかった戦闘機では、被ダメージの少ない部分に致命的な損傷がある可能性を想定し、その箇所を中心に分析すべきだという仮説思考を学び、これまでになかった視点を得ることができました。 データで判断する? また、データの収集や分析の目的は、それを基にした適切な意思決定にあると感じます。意思決定を円滑に進められるよう、データ分析のスキルを磨いていく必要性を強く意識するようになりました。 売上の謎は何? 売上分析においては、課題の真因を明確にするために、売上に直結する各種データをどのように収集するかが重要です。過去の実績や予算、さらに他社の数値との比較によりギャップを把握し、原因を推察して仮説を立てるプロセスは、正確な分析に寄与するというイメージが湧きました。 本質はどう捉える? 最後に、データ収集の際は、必要な要素の抽出を慎重に行うことが求められます。MECEの思考法を活用し、要素の抜け漏れを防ぐとともに、各項目に適した分析手法を検討することが大切です。データそのものの生成に注力するのではなく、本質が何かを見極め、意思決定を促す資料として仕上げることが、最も重要であると感じました。

クリティカルシンキング入門

問いで拓く学びの世界

どんな問いを見つける? どのような問いを立てるかが、その後の課題設定や解決策の方向性を決定づけるため、非常に重要なポイントと感じています。問いの立て方ひとつで、取り組むべき課題や解決方法が大きく変わることを実感しています。 本質の問いは何? また、本質を捉えた問いとは、なんとなく考え始めるのではなく、常に問いを意識し、組織全体で共有されるべきものです。かつては「問い」がうまく立てられないと感じていましたが、どの問いも「不正解」であるわけではなく、より最適な問いを見つけるプロセスの一環であると理解するようになりました。人は無意識のうちに考えを進め、問いの本質を見失いがちである点にも気づきました。 仕事ではどう問いかける? 実際の仕事では、抽象的な目標が示される中で自分の課題ややるべきこと、解決方法を見つける過程で、まずは課題の整理、原因分析、そして「なぜなぜ」のアプローチを実践するようになりました。こうしたプロセスを通じて、解決策や具体的な打ち手が見えてくると感じています。 問いにじっくり向き合う? 問いに向き合う際は、すぐに「これだ!」という結論に飛びつくのではなく、じっくりと時間をかけて向き合うことが大切だと実感しています。また、問いかけ形式で具体的に考えることや、グラフや視覚化、表の加工といった手法を用いて、根拠をしっかりと押さえながら解決策を見出すよう努めています。 評価で問いは正しい? たとえば、人事考課の時期に自己評価や上司からの評価を考える際、期初の目標設定の段階で正しい問いがすでに組み込まれていることに気づきました。この経験から、正しい問いの設定が評価にも大きく影響するという点を再確認しています。
AIコーチング導線バナー

「決定 × なぜ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right