データ・アナリティクス入門

目的設定で切り拓く未来

分析ってどう進める? 分析とは、物事を要素ごとに分解して比較することだと考えています。データ分析のプロセスを学んだことで、物事の見方がクリアになり、目的を明確に意識した上で作業を進める大切さを実感しました。分析終了後にどのような状態を目指すのかを具体的に思い描いてから、データの収集や加工に取りかかることで、効率的により良い結論へたどり着きやすくなりました。 目的はどう変わる? また、既存の実績と計画の対比資料については、目的を見直すことで、その後の行動につながる資料に改善できると考えています。新たな課題に対しても、目的をしっかり意識することで、より適切な判断へと結びつけたいと思います。 目的共有で安心? 資料作成に入る前には、まず目的の設定と仮説の作成を十分に検討するため、「データ分析のプロセス」を印刷し、常に見える場所に貼っておくようにしています。自分が資料を作る際のみならず、他の人に作成を依頼する際にも、目的をしっかり共有する説明を心がけ、全体の質向上に努めています。

データ・アナリティクス入門

データを読む力で広がる新視点

数字の壁は本当? データ分析に関して、「数字が得意でないとできない」という思い込みがありましたが、実際にはデータの読解力が重要だと感じました。データと情報を比較することで状況を把握しやすくしたり、意思決定をしやすくする手法の一つとして、どのような目的や仮説で分析を行うのかが最も重要な根幹部分であることに気づきました。 旅行動向はどう? 具体的な例として、訪日旅行観光客の市場動向と顧客行動の把握があります。どの国からの訪日観光客が増えているか、減っているか、滞在日数、1人当たりの消費額、訪問都市やその数、そして訪日旅行に求めていることや課題について分析しました。 立ち位置はどう評価? 会社が策定している中期経営計画の目標達成のためには、訪日旅行という分野において、自社が業界内でどのような立ち位置や状態になるべきかを明確にする必要があります。そして、その状態を達成するために必要となる情報やデータを考慮し、どのような戦略を打ち出すべきなのかについて検討することが求められます。

データ・アナリティクス入門

データ分析で発見する成功のカギ

比較に意味があるのは? 分析は比較であることを理解しました。つまり、比較に意味がない数値を比べることは無意味だと感じました。 失敗例から学ぶ分析法 データ同士の要素を揃えることも重要だと考えます。これまで成功例をいくつか分析して共通の要素を探したことがありますが、振り返ってみると、失敗例でも同じ分析をして失敗しているケースが多々あったのではないかと思います。それは、本当の成功要因とは異なると思います。 成功要因の鍵は何か? 広告などのクリエイティブにおける結果の分析で、特に比較要素が多い動画クリエイティブでは、成功事例と失敗事例を踏まえて、本当にキーとなるポイントを発見することができれば、大きな成果につながると感じます。 具体的目標に向けて行動 3月末までに業務の特定の箇所を学んだデータ分析を用いて数値を改善させる目標を立てました。毎週の授業の中で、具体的に自分の業務をイメージしつつ、会社の中で自分がどう行動するかを考えながら学習に取り組んでいます。

クリティカルシンキング入門

目的がぶれない学びの軌跡

目的と問いに迫る? 今回の学習では、目的を明確にし全体像を把握すること、さらには質問を分類し具体的な問い合わせによって問題点を洗い出すことの重要性を理解しました。その上で、正しい問いの設定には振り返りが不可欠であり、適宜確認することが大切だと再認識しました。 本質問題をどう捉える? プロジェクトを推進する中では、課題解決に向けた取り組みの際、本質的な問題や真因を見失う可能性があると感じました。こうした状況において、常にイシューを意識することで、ぶれずに考え、適切な行動を起こせるのではないかと思います。 イシューは共有できる? これからは、まずイシューを共有できる体制を整え、何が課題で何が目的であったかを振り返り確認することを実行していこうと思います。また、データ分析においても、結論に先立つのではなく、背後に潜む事実をしっかりと確認する姿勢を持ち続けたいと考えます。

データ・アナリティクス入門

仮説実践!即断で未来を掴む

効果測定は本当に? A/Bテストの実施により、短期間で効果測定が可能であることを実感しました。一方、単にデータ収集に時間をかけるだけでは、必ずしも問題解決には結びつかないということが分かりました。 分析時間は適切? 業務を進める際、初めはデータ分析から始めることが多い中、分析に時間をかけすぎる傾向があると感じています。一定量のデータが得られた段階で、迅速に仮説を設定し、追加の分析が必要かどうかを判断するか、実行フェーズに移行するかを見極めることが重要だと学びました。 行動開始のタイミングは? このコースを通じて、仮説に基づき行動に移すタイミングの大切さを再認識しました。今後は、データ分析に没頭しすぎず、適宜ストップしながら、仮説思考を軸にした実践的なアプローチを心がけたいと思います。

データ・アナリティクス入門

整理の魔法!ロジックツリー術

全体像はどう把握? ロジックツリーを用いることで、全体を俯瞰して物事を捉え、抜け漏れなく整理する手法を学びました。同時に、細かく分割する過程で目的そのものに偏らず、重要な要素を見逃さないバランス感覚の大切さも実感しました。 学びをどう応用する? これらの学びは、データ移行のプランニング時のプロセス分割や、データ分析において対象項目の洗い出しと重要度付け、プロジェクト体制の整理、また予算計画時の項目洗い出しなど、業務のさまざまな場面で応用できると考えています。 具体策はどう実行? 具体的な行動としては、まずスコープを決定する際にチェックツールを活用して抜け漏れがないかを確認し、プロセス整理の際にはロジックツリーを使って複雑な要素を分かりやすく簡素化する取り組みを行っていきたいと思います。

データ・アナリティクス入門

振り返りで開く未来への扉

データ分析の意義は? データ分析のプロセスや考え方の重要性を改めて理解することができました。自分が何を目指し、そのために何を把握し、どのように行動すべきかという点を再考するきっかけとなりました。 フレームワークはどう? 今後は、学んだフレームワークや考え方をビジネスの現場で積極的に活用していく必要があると感じています。以前業務で行ったデータ分析を、今回習得した知識をもとに再挑戦し、実践を通して理解を深めたいと思います。 知識を共有する? また、自分の理解度を確かめるためにも、学んだ内容を他のメンバーに伝えることが重要だと考えています。まずは、自身が学んだことを共有する場を設け、さらに他のメンバーもスキルアップできるよう、実践の機会を増やしていくつもりです。

「行動 × データ分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right