クリティカルシンキング入門

イシューから見えた成長の軌跡

適切なイシューの立て方は? 状況に合わせて適切なイシューを立てることの重要性を改めて実感しました。初めてケースを読んで分析してみたものの、非常に難しく、まだ十分に身についていないと感じました。今後、これまで学んだ知識をさらに活かせるよう、練習と実践を重ねていきたいと思います。 FAQタイトルはどう? また、FAQのタイトルづけについては、お客様の解決したい課題を問いかける形で整理することで、誰が見ても内容が分かりやすい記事に繋がると感じました。これにより、より具体的な問題解決を図るための記事作りを心がけたいと思います。 改善要望は何が課題? 開発への改善要望においては、ただ「やってほしいこと」を伝えるのではなく、解決したい課題(イシュー)からアプローチすることで、より的確な対応が期待できると学びました。 業務脱線はどう防ぐ? 業務インプットの際には、説明中に画面の別機能の話題や質問の補足などで脱線しがちなため、「何を伝えるべきか」を双方でしっかり認識しながら進めることが大切だと感じました。このような意識の共有が、目的を見失わずに効率的なインプットにつながると考えています。 記事作成の基本は? 今後、新たな記事を作成する際には、まずその機能が何のために存在するのかという基本的な問いから考え、記事の目的を明確にしていきたいと思います。また、来月から始まる業務インプットにおいても、開始前に「今日理解してほしいこと(イシュー)」を共有することで、より効果的な説明ができるよう努めたいと思います。 ケース分析で得る知見は? 最後に、ケース分析を通じて、イシューの立て方には慣れが必要であると痛感しました。自社の施策においても、なぜその取り組みが行われているのかを常に意識し、考える習慣を身につけることで、より深い理解と実践へとつなげていきたいと思います。

戦略思考入門

フレームワークで差別化の極意を学ぶ

3週目の反省は? 3週目が終わろうとしていますが、フレームワークの活用がまだ十分に習慣化されていないことを反省しています。瞬発力に頼るだけでは再現性が低く、PDCAサイクルを活かした成果の積み上げもできません。次週こそ、意識して取り組みたいと思います。 VRIOで何が変わる? 差別化のポイントを身につける上で、VRIOフレームワークが非常に理解しやすかったので、今後の活用方法を考えていきたいです。ターゲット顧客と訴求する価値はそれぞれの目的と目標に関連し、業界外の希少性や模倣困難性を持つことが重要です。これらを大局的かつ長期的視点で捉え、戦略的思考との結び付けを深めて、体系的な学びとして定着させたいと考えます。 施策案はどう検討? 現在、施策案の推敲にあたり、中期計画や来期戦略の検討に活用したいと思っています。日常業務では、ベンダ評価と社内企画検討に適用する予定です。ベンダ評価においては、提案がどのように差別化されているかを確認し、社内企画では、経営にとって魅力的な企画となっているかを評価する観点で、今回学んだ差別化の基準を活かしたいです。 戦略検討の焦点はどこ? 中期計画と来期戦略検討では、まず各テーマにおける社内のターゲットを明確に定義してみようと考えています。すべてのテーマが差別化された施策にならないかもしれませんが、ターゲットに向けた価値の定量化と実現可能性の考察を繰り返し行い、戦略的思考のプロセスとして定着させていくつもりです。 企画提案の改善点は? 今後のベンダへの提案要請では、VRIOの要素を含めるよう求めます。これによって、当社の理解度や提案の模倣困難性、または実現可能性について言及し、評価の精度向上につなげることを目指しています。さらに、社内企画にもVRIOフレームワークを取り入れることで、より魅力的な企画提案が可能となるのではないかと感じています。

クリティカルシンキング入門

イシューに立ち戻る癖で問題解決力アップ

イシューを明確にする重要性とは? イシューとは「今ここで答えを出すべき問い」である。クリティカルシンキングでは、このイシューを明確にすることが非常に重要で、常にイシューを一貫して押さえ続ける必要がある。 ぶれない思考をどう保つ? 物事を考える際、自分が問いかけているものが何なのかを常に意識することが大切だと学んだ。考えがぶれてくることがよくあるため、ぶれそうになったらすぐに立ち戻って再考する癖をつけたい。例を用いた学習を通じて、頭の中をうまく整理することができた。例えば、「なぜ?」「どうして?」「どうする?」と考えることで、企業の強みと弱みを把握し、施策を出す方法が理解できた。 具体的な問いの立て方とは? 業務を進める際には、イシューを明確にすることが肝要である。例えば、客単価を上げるためにはどうすべきか。季節の売り場を盛り上げるためには何が必要か。ある商品の実績を向上させるためにはどうするかといった具体的な問いを正確に定め、そのための施策を考える癖をつける必要がある。何かを考え続けていると、目指していたゴールが不明確になることがあるため、その都度イシューに立ち戻り、再認識することが重要だ。 営業サポートでのイシュー活用法は? 営業サポート業務においては、イシューを意識的に認識しないと、その重要性が薄れることが多い。まず、会社として何をすべきか、経費や効率性を考慮して意識的に考え、業務の効率化を図りたい。 資料づくりで営業力を上げるには? 営業への活動サポートを行う場面では、その活動の目的を明確にするための資料づくりが重要である。また、自分にとってのイシューだけでなく、他の人からの問いも想定し、明確な内容を発信することが求められる。問いを共有し、その問いを解決するための行動を全員で取り組むことで営業力が向上すると思うため、問いの共有を実施するべきだと考える。

クリティカルシンキング入門

視点を広げる思考の旅

思考の偏りはどう感じ? 自分の思考力の偏りや視点の狭さを認識する良い機会となりました。これまでの仕事では、経験と直感に頼った判断をしていることに課題を感じていたため、今後は目的志向を持ち、意識的に考える習慣を身につけたいと思います。 客観視点の価値は? また、経験に基づいた客観的な視点の重要性も認識しました。今後は判断や部下指導においてこの視点を活かし、施策を進める際は個別の経験に依存せず、全体を俯瞰して検討することを心がけます。各段階で「この判断が組織全体の目標達成にどう寄与するのか」を確認しながら、戦略的なアプローチを目指していきたいと思います。 部下指導はどう変える? 部下の指導においても、経験則にとどまらないアドバイスを心がけ、部下自身が目指す成果や目標を見据えた指導を続けていきたいです。部下が自身の視点や思考の幅を広げられるよう、思考の枠組みや視座を意識的に変えるよう促し、短絡的な判断ではなく、多面的な視点から判断できる力を育むサポートを行っていければと考えています。 提案の本質はどう? 具体的には、部下の提案や施策の判断において「具体」と「抽象」を行き来することを意識し、提案の本質を理解することから始めます。提案がどのように組織の目標に寄与するのかを確認し、短期的な成果だけでなく長期的視点からも効果を評価します。 視点を広げるには? さらに、提案内容を複数の視点から構造化し、異なるアプローチを考慮します。他の方法や視点がないか、提案が本当に必要な施策であるかなどを批判的に検討し、最良の選択肢を見極める姿勢を持ちます。 最終判断は何を重視? 最終的な判断を行う際には、他部署や異なる業務領域からの視点も取り入れ、多面的な評価ができるよう努めます。こうした取り組みにより、客観的かつ全体的な視野を持って判断できるようにしていきたいと思っています。

データ・アナリティクス入門

問題解決へのアプローチを学ぶ

原因をどのように探る? 原因を探究することについて学びました。問題の原因を明らかにするためには、その問題に至るまでのプロセスを分解して考えるアプローチがあります。複数の解決策を用意し、それらを判断基準の重要度に基づいて根拠をもって絞り込むことが重要です。 データ分析の精度を高める方法は? 具体的なステップを踏んでデータを分析し、問題解決の精度を高める方法や、仮説を試しながらデータを収集し、より良い解決策に繋げる方法を学びました。これら両方のアプローチを組み合わせることで、データ分析の精度を一層高めることができます。例えば、「自分の残業時間」について考えてみると良い練習になります。 A/Bテストはどのように進める? 【A/Bテストについて】 A/Bテストとは、二つの施策を試し、比較するテストです。目標の設定から始まり、改善ポイントの仮説設計、実行までのステップを踏みます。優位なデータ数が集まるまで行い、その期間内で検証を行うことが重要です。目的と仮説を明確にし、シンプルで低コストかつ少ないリスクで運用できるようにすることが求められます。 残業問題をどのように解決する? 試しに「自身の残業時間」の多さについて考えてみました。棚卸できる業務をその場しのぎで抱えていたり、時間割やスケジュールの把握が疎かになっていたりと、整理すべき項目はいくつか見つかりました。複数の解決策を導くためには、まだ整理しなければならない複合的な原因が残っていますが、「有耶無耶」な部分を明確にすることで解決策が見えてきました。 今後の課題解決のステップは? 今後は、メンバー個別の面談や少人数のミーティングを通じて、現在の課題を一緒に洗い出し、原因を突き止めてみることを実践したいと考えています。そして、仮説を立て、複数の解決案をもって組織としての意思決定や問題解決に繋げていきます。

データ・アナリティクス入門

分析で見つけた新たな発見と気づき

比較による効果測定とは? 分析とは、比較することである。まず、分析する項目を整理し、各要素の性質や構造をはっきりさせることが重要だ。何かの効果を測りたい場合、「ある」場合と「ない」場合で比較を行い、分析対象以外の条件も整える必要がある(これは「Apple to Apple」と呼ばれる)。 データ分析の目的と仮説 データ分析を行う際には、まず目的と仮説を立てる。例えば、データ分析の目的は何で、その結果どのような状態を目指すのかを明確にすること。そして、どの項目を分析すれば目的を果たせるのか、その項目をどのようにデータ加工すれば良いのかを考え、具体的な仮説を立てることが大切だ。 適切なデータ加工と表現法 データにはその種類に応じた加工法やグラフの見せ方が必要である。割合で表現するのが適切な場合と、実数(本来の値)で表現するのが適切な場合がある。また、質的データ(数値の大小に意味がないもの)と量的データ(数値に意味があるもの)の違いを見極める必要がある。 人事部門のデータ活用法 人事部門では、健康経営やエンゲージメントに関するデータを扱い、改善に向けた施策を企画することが多い。このため、データを活用して課題解決や目標達成のためのPDCAサイクルを効果的に回せるようにすることが求められる。これまでの施策参加者がどれだけ改善したか、「参加した人の中で●●をした人はより■■だった」といった分析を行うが、このためには、参加者と不参加者の間での比較を行うことが重要だと感じている。 目的設定と議論の重要性 まずは、目的を明確にし、自分自身の思い込みや仮説に偏らず、上司やメンバーと徹底的に議論することが必要だ。次に、課題に対して目指す姿を定量的にKPIとして設定し、現状を把握する。算出するデータに定義と根拠を持ち、それを分かりやすく伝えるスキルを身に付けることも重要である。

クリティカルシンキング入門

切り口で明かす学びの本質

データはどう見切る? データの切り方によって、同じ数字でも見える課題や傾向が大きく変わることを実感しました。目的を明確にして「何を見たいのか」を意識した切り分けを行うことで、漠然と眺めるだけでは気づけなかった本質が浮かび上がり、無駄を省いた的確な分析が可能になると感じています。 MECE活用は有効? また、MECEの考え方を取り入れて整理することで、重複や見落としを防ぎ、全体像を正確に把握できるようになりました。その結果、何が起こっているのか、どこに手を打つべきかを論理的に説明でき、相手にも納得してもらいやすくなると学びました。 支援でどう効果発現? たとえば、新規事業の構想支援では、顧客層、提供価値、チャネル、収益構造などの視点で情報を整理することで、情報の抜けや重複を防ぎ、相手の納得感を得て意思決定をスムーズにする効果を実感しました。 組織開発の整理法は? また、組織開発の現場では、ヒアリングした内容を「構造」「風土」「スキル」「制度」といった切り口で整理することにより、課題の全体像や優先順位が明確になり、具体的な施策立案につながっています。 研修・講演はどう整理? さらに、研修や講演の場面でも、参加者にとって複雑なテーマを目的に沿って段階的に分解して提示することで、理解と納得を引き出す効果がありました。オンラインでのクライアントとの対話やレビューの際にも、現在の視点や抜け漏れ、そして本質を可視化することで、共通理解と納得感のある議論が進められると感じています。 学びを今後どう活かす? 今回学んだ「切り口の工夫」や「MECEの視点」は、事業開発や組織開発の現場で、初期の仮説立てからヒアリング結果の整理まで非常に役立つと実感しています。今後はこれらの手法を意識的に活用し、ツールを組み合わせながら日常業務に継続的に取り入れていきたいと思います。

戦略思考入門

賢い選択で効率化を目指す!

捨てる理由は何だろう? 今回のWEEKで学んだことは、「捨てる」という行為の重要性でした。特に、目的と数値的根拠(特に利益)を持って選別することが重要だと感じました。WEEKを通して感じたのは、物事の整理・分析をし、大局的な視点で差別化した戦略を立てることで、目的をもって選択(捨てる)するサイクルが大切だということです。 効果をどう見極める? ビジネスでは、投資対効果の高いものだけを選び続けるのが理想です。しかし、最初からすべて効果の高いものを作り出すのは難しいと実感しています。限られたリソースの中で新しい施策を試しながら、投資対効果の低いものを捨て、高いものを残すというサイクルを繰り返すべきだと明確になりました。何を目的に捨てるのかをしっかり考え、一度選択したことでも目的をもってやめることが重要だと感じました。 選別基準は何だろう? WEEK内の課題では、実際に企業へのアプローチ方法を考える設問を通じて、何を基準に取捨選択するかを理解しました。これまでは漠然とした時間や工数で判断していましたが、利益率で優先順位を判断することが重要だと学びました. 集約のポイントは? 仕事の集約に際しては、効率性の高い内容を優先的に集約していきたいと思います。また、実行して非効率だと判断した場合は、捨てる選択をする勇気を持つことも心掛けます。さらに、多回数の会議や定例業務を見直し、品質を上げたい業務に集中できるように整えたいと考えています. 効率向上の戦略は? まずは目の前の問題に取り組み、課題解決に活かしていきたいです。高品質化と効率化を実現するため、現時点での課題であるリソース不足に対処します。費用対効果の悪い業務を洗い出し、捨てるかどうかをリストアップし、その上で新たに生み出したリソースをどの業務に集中させるかを選択していきたいと思います.

データ・アナリティクス入門

データが照らす学びの軌跡

意思決定はどのように? ジレンマに直面した際の意思決定プロセスについて、具体的な手順を学びました。仮説を立て、その仮説に基づいてデータを収集し、最終的な結論につなげる基本的なプロセスが身についてきたと実感しています。特に、ある教育機関で見られた事例―忙しさから採用候補者の面接時間が確保できない一方で、面接を行わなければ生徒からの不満が蓄積し、経営に悪影響を及ぼす可能性がある―は、自分がスケジュールを詰め込みすぎている点に気づかされる貴重な経験となりました。講義の冒頭で「データ分析においては、何を目的とするかが極めて重要である」という話を聞いて、改めてその本質に立ち返る機会となりました。 人口減少策をどう見る? 人口減少対策においては、何をもって効果とするか判断するのが難しく、一見、あらゆる施策を試すような印象を受けますが、実際にはリソースが限られているため、何を課題として捉えるかが大切です。今一度、どのような仮説を立て、どんな事業を展開し、結果をどのように検証するかという一連のプロセスについて考え直す必要があると感じています。最近、ある地域の各自治体が実施する政策の一部を説明変数として、UIJターンに影響を与える要因を分析した論文に触れる機会がありました。施策分野ごとに縦割りで考えがちな現状に対して、異なる組み合わせが流入人口に与える影響を示すデータに、非常に新たな視点を得ることができました。 データ調査の下準備は? 自力で高度な分析を行うには限界があるものの、まずは地域内の市町村が実施している政策を類型化し、その一覧を作成するなど、データによる調査の下準備が可能だと考えています。具体的には、関係人口や交流人口を創出する施策、雇用創出に関する施策、住居に関する施策、さらに子どもや子育て支援に関する施策について整理し、評価データをまとめていく予定です。

データ・アナリティクス入門

問題の原因をデータ分析で解明!

問題の原因をどう探る? 問題の原因を探るためには、データを確認しながら原因を突き止めることが重要です。問題の原因を明らかにするために、プロセスを分散して問題箇所を絞り込み、原因の仮説を立てるのが効果的です。問題がある場合、その結果には必ずその流れがあり、その流れを押さえることで、プロセスのどの段階に問題があるのかを特定できます。 解決策の検討はどう進める? 解決策を検討する際は、複数の選択肢を洗い出し、根拠を持って絞り込むことが求められます。ステップを踏んでデータを分析し、問題解決の精度を高めることと、仮説を試しながらデータを収集し、より良い問題解決に繋げることは、両者のアプローチを組み合わせることが効果的です。まず手始めに身の回りのデータを分析すること、分析の練習を積み重ねること、そしてどんな分析計画を立てるかシミュレーションし、どんな情報を誰から収集するのか、データはどんな形で収集すればよいかを考えることが大切です。 シンプルで低コストなA/Bテストの利点 A/Bテストは、AとBの施策を比較するシンプルなテストです。運用や判断がしやすく、低コストで少ない工数で実施できるため、リスクが少ない。A/Bテストを行う際には、目的や仮説をしっかりと明確にし、有効なデータが集まるまで実施します。ただし、複数の要素をテストしたい場合には別の手法を検討すべきです。また、パターンは同時に同じ期間行うことが必要です。 データ分析の第一歩は何から始める? 解決策を考えるときには、必ず複数の選択肢を検討し、「ステップを踏んでのデータ分析」と「仮説を試しながらのデータ収集」の両輪で分析を行うことが効果的です。分析が苦手な方には、まず身の回りのデータを分析すること、分析の練習を積み重ねること、そして問題にはそこに至るまでの流れがあることを意識することをお勧めします。

リーダーシップ・キャリアビジョン入門

意見交換で見つけたリーダー像

リーダーシップは誰でも発揮できる? リーダーシップは特別な能力ではなく、誰もが状況に応じて発揮できるものであると実感しました。自分自身、リーダーには一定のハードルを感じていたものの、意見交換を通じて、誰もがそれぞれの場面でリーダーシップを発揮できることに気づかされました。 リーダーの条件は何? 本日の授業で覚えておきたい点は三つあります。まず、リーダーとは必ずフォロワーがいる存在であるということです。次に、信頼がなければ人は従わないというドラッカーの言葉が示すように、リーダーには多くの要素があり、人それぞれ異なるという点です。私は自分なりのリーダー像を見つける必要があると感じました。最後に、目標があってこそ達成できるということです。ぼんやりとリーダーになると言っても実現は難しく、明確な目標を持ってこそリーダーシップを発揮できると理解しました。 学びを業務に活かす? また、今週学んだことを、施策検討や新規プロジェクトのアサイン、日常業務において活かしていこうと考えています。タスクを依頼する際には、具体的な成果物のイメージを共有し、初めの指示出しで共通理解を確認することや、背景・意義・目的を丁寧に伝えることで、メンバーが自律的に動ける環境を整えることが重要だと感じました。さらに、相手の能力を把握し、適切なフォロー体制を設定することで、作業を円滑に進められるよう努めます。 どう伝えて信頼つかむ? タスク依頼の際に、指示待ち状態を避けるための説明の粒度や、相手から望んでいるものをどう引き出すかという点についても学びました。信頼を得るためのコミュニケーションは非常に重要ですが、全員の意見を完全に実現することは難しいため、どのように適切なコミュニケーションを取るかについて、他の受講生の意見も参考にしながら、今後さらに知識を深めていきたいと考えています。

データ・アナリティクス入門

仮説習得が拓く未来の学び

仮説はどう活かす? スピードや精度を向上させるためには、分析の初期段階で仮説を立てることが重要だと学びました。結論に向けた仮説と問題解決のための仮説という二種類の仮説があり、それぞれ目的や時間軸に合わせて使い分けることが求められます。 フレームワークってどう活かす? また、3Cや4Pなどのフレームワークを活用することで、思考が整理され、仮説形成が容易になると感じました。仮説に沿って必要なデータを抽出し、場合によっては新たにデータを取得するプロセスは、効果的な分析の基本と言えます。数字で見えにくい効果も、可能な限り数値として示すことで説得力が増し、合理的な判断材料となります。 数字で信頼はどう? 具体的には、コンバージョンレートなどの数値計算により、直感だけに頼らず理論的な判断が可能となります。フレームワークを用いることで、業務のスピード感と精度が向上した経験もあり、反対意見を含めた多面的な情報収集が仮説検証の信頼性を高めると実感しました。 新機能はどう検証する? さらに、新機能をリリースする際には、3Cの観点から分析して優先度を明確化したり、施策ごとの「影響度×実行難易度」を評価することで、迅速な判断を下しています。ユーザーインタビューにおいては、どの層のユーザーがどのフェーズで不満を感じているかを仮説から検証し、具体的なデータに基づいて問題点を抽出する工夫も行っています。 仮説と判断はどう連携する? 週に一度、仮説をもとに業務課題を整理し、必要なデータを洗い出すワークシートを作成するなど、日常的な業務の中でも「仮説→データ→判断」の流れを徹底しています。毎月、ユーザーアンケートやインタビュー結果の分析から改善案を提案し、社内でのレビューにてその流れを共有することで、施策の精度や実行力の向上に努めています。

「施策 × 目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right