データ・アナリティクス入門

数字だけじゃ見えない分解の力

なぜ全体では見えない? 今週のケーススタディでは、データ分析における分解とプロセスのステップ化の重要性を学びました。最初は全体の満足度を確認したときは横ばいで問題がないように見えたものの、クラス別に分解すると上級クラスでのみ満足度の低下が見受けられ、全体の数字だけでは特定の条件下で発生する問題を見逃す危険性があると実感しました。 コメントと数字の関係は? また、定量データと定性データの組み合わせによって数字の背景にある理由が明らかになる手法も印象的でした。充足率や苦情件数といった数字と生徒のコメントを照らし合わせることで、数字が示す事実に対するより深い理解が得られると感じました。 業務改善の分解法は? さらに、採用プロセスをステップごとに分解してボトルネックを把握する手法は、自分の業務に応用可能であると感じました。業務フローの各ステップの所要時間を可視化することで、改善が必要なポイントを明確にできると考えています。 仮説検証の効果は? 最後に、複数の仮説を立ててからデータで検証するアプローチが、問題解決の際に重要であると再認識しました。原因を一つに決めつけず、多角的に検討する姿勢は日々の業務においても活かしていきたいと思います。 エンジニア視点で何を学ぶ? 私はWebサービスの安定運用を担当するエンジニアとして働いています。今回学んだことは、システム障害の原因分析と業務プロセス改善の二つの場面で活用できると考えています。 障害原因はどこにある? まず、システム障害が発生した際には、全体のエラー率だけを確認するのではなく、機能別、時間帯別、利用者別など、複数の切り口でデータを分解して問題の発生箇所を特定することが重要です。また、利用者からの問い合わせ内容と数字を組み合わせることで、障害の背景にある理由を明確にすることができると実感しました。具体的には、障害時のチェックリストに分解の切り口を追加し、チーム全体で共有することで対応の質を向上させたいと考えています。 対応時間短縮は可能? 次に、障害対応にかかる時間短縮という課題に対しては、原因検知から初動対応、原因特定、復旧作業、再発防止策の検討といったステップに分解し、各プロセスの所要時間を記録してボトルネックを特定する手法が有効だと感じました。例えば、原因特定に時間がかかる場合は、調査情報の整理や手順書の見直しが必要であると考え、障害対応の記録フォーマットに各ステップの所要時間を記入する欄を追加し、データを蓄積して分析することで改善に役立てたいと思います。

クリティカルシンキング入門

自分に気づくクリティカル対話

なぜ自分が対象? 一番印象に残ったのは、「クリティカル」の対象が他者ではなく「自分」であるという点です。人は誰しも思考のクセや思い込みを持っているという前提に立つことで、業務上の対立や他者の意見に対する自身の反応が変わると感じました。 事実で判断するのは? また、感情で反応するのではなく、事実に立ち返って判断するという視点を得ることができました。個人の感情ではなく、発言内容そのものに偏りや思考のクセが含まれているという前提で場を理解することが、新たな気付きにつながりました。 学びの実感は何? 今週の学びの中で、自分にも他者にも思考のクセがあることを認識し、型を活用した分析が建設的な意見を生み出すきっかけになると実感しました。これまで意見の押し付けだと感じて苦しかった場面も、WEEK1で学んだ考え方を用いることで、前に進むための対話へと変えることができるのではないかと考えています。 どの視点が有効? 【クリティカルシンキングの学び】として、まず①誰しも思い込みがあること、次に②視点(人別)、視座(役割別・役職別)、視野(広範囲)という3つの「視」を持つことで思考の広がりが得られること、そして③ロジックツリーやMECEなどの型を利用することを意識しました。 課題は何だろう? これらを踏まえ、以下の自分の課題を改善していきたいと思います。伝えたいことが多すぎてまとめに苦労している点、論理に飛躍がある点、自分の思いを言語化するのが苦手である点です。 本質を探るには? 特に、さまざまな「視座」を持つことで業務の「視野」を拡げ、自分なりに「問題の本質」が何か、過不足がないか、またはずれていないかを見極めるトレーニングを続けたいと考えています。そのため、まずは1日20分、業務を点検し、思考のクセや型の実践を振り返る時間を作るつもりです。 極端な例はどう捉える? ドラッグストアの事例では、売っていない商品の例として「ロケット」や「アメリカ」など、極端な例が挙げられていました。実務で活用するにはやや飛躍した印象を受けましたが、思い込みや制約の影響という観点で理解するには有意義であったと感じます。 実務への応用は? とはいえ、極端な例は理解できるものの、実務にどのように落とし込むかが課題です。意見の発散と集約の場面において、最低限外してはならない条件とは何かという点に着目し、発散を広げすぎずに思考を狭めないための前提設定や問いの置き方について、参加者同士で工夫やTIPSをブレインストーミングしてみたいと思います。

クリティカルシンキング入門

振り返りが導く新視点の瞬間

どうして考え迷った? ワークをスピーディーに進める中で、時間の制約を受けながら多くの考えを出す難しさを強く実感しました。しかし、振り返ると、決して「考えが出ない」わけではなく、整理されていない情報に基づいて漠然と考えていたことに原因があったと気づかされました。 どうして偏り発見? 特に印象に残ったのは、ドラッグストアを題材としたワークです。自分では思い浮かびやすい考えに偏りが生じることに、初めて気づく機会となりました。自らの思考の癖や前提を見直すきっかけとなり、大変有意義でした。 他者の意見どう響く? また、他の参加者からの多様な意見にも大いに刺激を受けました。自分一人では気づかなかった視点やアイデアに触れることで、新たな学びを得ることができました。参加者同士の前向きな学びの姿勢に触れ、これからも学び続けたいという気持ちが自然に高まりました。 業界へどんな影響? 今回学んだ内容は、私が所属する業界におけるマーケティングの視点にも応用できると感じています。たとえば、「どのような商品を、どのような層に、どのようなシーンで、どのように利用するのか」を整理する方法は、商品理解だけでなく、社内の施策や企画検討にも活かせる貴重な視点です。 研修設計で何を問う? 私の業務である人材開発においては、研修や施策の設計時に対象となる社員の年代、階層、役割を明確にする必要があります。その際に「なぜこの施策が必要なのか」「なぜ今行うのか」という問いを常に意識することが、企画の妥当性を高めるうえで大変重要だと考えました。 なぜ説明が必須? 特に、人事部と営業部では繁忙期が異なるため、施策の目的やタイミングについて十分な説明を行わなければ、全社的な理解や納得を得るのは困難です。背景や意図を整理し、関係者に分かりやすく伝えることが、私たち人事の責務であると感じています。 公式文書は伝わるか? 具体的なアクションとしては、まず全社に発信する公式文書や添付資料を、平易で端的に意図が伝わるよう構成することを意識します。限られた時間内でも施策の狙いが一目で理解できる資料作成に努め、業務の円滑な推進に繋げていきたいと考えています。 議論で何を改善? 振り返りとして、限られた時間の中で意見や情報をスピーディーに整理し、かつクリティカルな発言をどのように行うべきか、今後の協議の場で意識していきたいと思います。また、他の受講生とディスカッションを重ねることで、より良い工夫やコツを共有し、一層の学びへと繋げていければと考えています。

デザイン思考入門

デザイン思考で見える未来

デザイン思考の真意は? デザイン思考の基礎を学んだことで、これは始まりに過ぎず、奥深さを実感しました。アイデアはただ待つものではなく、フレームを活用して導き出すことが印象に残りました。また、自分の考えに固執せず、他者の意見を聞くことの大切さを再認識し、さまざまな視点や考え、意思があることに驚かされました。さらに、数多くのツールを学びましたが、漫然と使うのではなく、各ツールから何を得たいのかを明確にしながら活用することが重要だと感じました。各ステップの終わりは、突き詰めた結果がコミュニケーションに繋がったタイミングで終了するという点も印象に残りました。 販促戦略の行方は? 本業の販促支援では、デザイン思考をより意識して取り入れることで、企画がより受け入れられるのではないかと考えています。これは、自分自身のためではなく、クライアントのために活用するという考え方に基づいています。同時に、業務改善やチームビルディングにおいても、共に働く仲間との共感がなければ良いチームワークは生まれないと実感しており、こちらの分野でもデザイン思考を活用する予定です。 評価指標は何を? 販促支援に関しては、コンペ案件を通して受注状況や、業務終了時の評価を指標とします。具体的には、受注で5点、良い評価が得られた場合に3点、アンケート数などのKPIが目標を上回れば2点という10点満点の指標を用います。また、企画段階では幅広い視野を持ち、デザイナーと意見を交わしながらデザイン思考を実践していきます。 効率化の進め方は? 業務改善とチームビルディングでは、業務効率化の指標として残業時間の削減を目指します。チーム全体で会社が求める削減時間に取り組むとともに、メンバーの希望や責任感、働き方に関するヒアリングを通じて共感を得ながら、課題を見つけ出し、アイデアを出していく方針です。不完全な部分は実行後に見直し、成功した事例を積み重ねていく予定です。 副業戦略の秘訣は? 副業でのコンサル活動においては、本講座で学んだ内容と実践を組み合わせ、自分自身のコンテンツとして確立させることを目指します。まずはデザイン思考を実践し、成功パターンを整理してノウハウ化し、それを基にミニマムコンテンツを作成。その上で、複数の事例を集約し、デザイン思考の基本プロセスに乗せたセミナーコンテンツとして発展させていく計画です。参加者の意見を取り入れながら、自身のコンテンツを継続的にブラッシュアップしていきます。

データ・アナリティクス入門

ゼロからプラスへ実践で拓く未来

どうして実践は難しい? ありたい姿と現状のギャップを何度も意識しているものの、実際に実践するのは非常に難しいと感じました。その中で、マイナスをゼロにする問題解決とゼロをプラスにする問題解決の違いに注目し、後者ではありたい姿をステークホルダーと共有することが重要という点がとても印象に残りました。デジタル技術が進む現代においては、問題発見力が一層求められる中で、TOBEを構想する力だけでなく、その構想について関係者と認識を合わせる共感力の重要性を再確認する機会となりました。 どの分析で理解する? また、what、where、when、whyのフレームを問題分析に取り入れるというシンプルなアイデアは、これまであまり意識してこなかったため、新鮮な学びとなりました。自分で活用する際も、他の人に説明する際も非常に分かりやすく、実用性が高いと感じています。 ロジック知識はどう? ロジックツリーやMECEのフレームについても、改めて説明を受けることで新たな気づきがありました。特に、層別分析と変数分析のジャンル分けは、普段無意識に行っていた部分が大きかったため、今後は意識的に思考のスイッチングに活用していきたいと考えています。 基本はなぜ大事? さらに、GAiLのセッションを通じて、経営における基本を徹底すること、すなわち凡事徹底の重要性を実感しました。WEEK0で学んだ事例に倣い、慣れや直感に頼らず、都度基本に立ち返って自分の手法を客観的に見つめ直すことが必要だと感じました。 切り口をどう捉える? また、さまざまなフレームワークや切り口が存在することから、情報を学べば学ぶほど実践時にどれを採用すべきか迷うこともあります。しかし、生成AIをパートナーにすれば、自分が直面する課題に対して最適なツールや切り口を模索する際の有力なサポートになると新たな活用方法を見出しました。 改善策は何か? 具体的な今後の改善点としては、まず凡事徹底のために自分が立ち返る教科書として本棚を見直すことから始めます。次に、ロジックツリーの活用については、自分が使用しているアウトライナーの新たな用途として、思考整理に取り入れ、層別と変数の切り替え(国語的分解と算数的分解)を意識して活用していきたいです。さらに、分析を始める前に一度立ち止まり、生成AIとともに最適なツールと切り口を検討することで、より効果的な問題解決のアプローチにつなげられると考えています。

データ・アナリティクス入門

論理で解く!現場課題の4ステップ

問題解決の手順は? 「問題解決の4ステップ」と「ロジックツリーを使った分解思考」が今週の学びの中で特に印象に残りました。まず「問題解決の4ステップ」では、「何が問題か?(What)」を明確にし、「どこに問題があるか?(Where)」でその範囲を絞り込みます。さらに、「なぜ起きているのか?(Why)」で原因を深堀りし、「どうするか?(How)」で具体的な対策を検討する流れを学びました。このフレームワークを用いることで、感覚や経験だけに頼らず、論理的に課題を捉えられると実感しました。 ロジックの整理は? また、ロジックツリーの手法では「モレなく・ダブリなく(MECE)」を意識しながら、問題やテーマを枝分かれさせ、整理する方法が紹介されました。例えば、現場で発生する遅延という問題に対して「人」「資材」「天候」などのカテゴリーに分解し、それぞれを詳細に検討することで、原因の見落としを防ぐことが可能となります。さらに、各要素を深掘りすることで、より具体的な解決策に結び付けられる点が非常に実践的だと感じました。 再現性は保たれる? これらの思考法を現場の課題整理に活用することで、感覚や経験に頼らず、再現性のある改善が実現できると考えています。たとえば、工期が予定よりも遅れている場合には、まず「What:何が問題か?」で遅延の事実を明確にし、「Where:どこに問題があるか?」で特定の工程に絞ります。そして、「Why:なぜ起きているのか?」で人員不足や資材納品の遅れ、天候の影響など原因をロジックツリーで分解し、それぞれに対して「How:どうするか?」の具体策を検討します。 トラブル対応は? 実際に現場で問題やトラブルが発生した際には、まず「何が問題か?」を関係者と共有し、事実を明確にします。その上で、問題のある工程や範囲を「どこに問題があるか?」の観点から洗い出し、ロジックツリーを活用して「なぜ起きているか?」を検証します。原因が複数考えられる場合には、MECEを意識して整理し、各要素に対して「どう対応するか?」という具体策を検討することが重要です。 習慣化は可能? 今後は、毎日の朝礼後など短いミーティングを通してこの4ステップを活用し、現場の問題を見える化・言語化する習慣を身につけたいと考えています。個人としても、業務日報にこのフレームワークを取り入れることで、思考力と実践力をさらに高めていきたいと思います。

クリティカルシンキング入門

業務や日常で成果を出すための課題設定のコツ

イシュー設定はなぜ重要? イシューの設定は、考える範囲を決め、追うべきKPIを明確にするために重要だと感じました。今回の課題の中で、「営業のチームリーダーだったらどの問いを設定すべきか」というクイズが特に印象的でした。例えば、100年後のあるべき姿や今年度の契約というのは上長が検討すべき課題であり、チームリーダーとしては来月の売上について検討すべきとされることが答えでした。 視座を高めるための方法 本講座では、視座を変えることや上長への説明を行う際に、上長が気にしているポイントを押さえる必要があると学んできました。しかし、課題解決策を具体的に検討する際には、範囲を定めないと議論もまとまらず、効果も出にくい施策となるのだと感じました。 【ディスカッション後の追記】 なぜやるのかを考える際には、視座を高めたり変えたりする必要がありますが、自分が影響を与えられる範囲で課題を設定することが大事です。影響を与えられない課題を設定してしまうと、効果を出すことができません。また、課題を正しく設定するためには、Week1~4の学びを生かし、ロジカルに説明ができる課題を設定することが重要です。それにより、関係者がなぜその課題を解決する必要があるのかを理解しやすくなり、議論も前に進みやすくなると考えました。 会議の目的をどう設定する? 会議の目的の設定についても、ただの進捗報告になりがちであるため、その会議で解決すべきことを設定することが重要です。たとえば、来月の目標達成のために取りうる手段の洗い出しや、優先順位の決定、目標の見直しなどがあります。また、営業やプロダクト改善施策の検討においても、具体的なイシューを設定することが求められます。例えば、店頭での来月の売上を伸ばす方法や操作性を上げる方法などです。 まずは解決すべきイシューが何なのかを明確にすることから始めます。業務だけでなく日常生活の中でも意識して、定着させたいと思います。また、業務でメンバーや関係部署から提案された内容を確認する際にも、何を解決すべきなのかを明確にした上で議論するようにします。 【グループワーク後の追記】 具体的には、以下のような例があります。 - 現在3歳の娘に対する悩み - 進めている家購入で解決したいこと、かけられる費用 - 家計管理で目標達成するには これらに関しても、一歩立ち止まってイシュー設定から見直してみたいと思います。

データ・アナリティクス入門

小さな復習が未来を開く

比較の価値って何? 「分析の基本は比較」という視点を再認識しました。自分と他者、自分がありたい姿、そして現在の自分を丁寧に比較することが、より深い洞察へとつながると実感しています。また、学習においては一夜漬けややっつけ仕事ではなく、たとえ1日5分の復習でも習慣として続けることが重要だと痛感しました。特に、ビジネスの現場における影響度を考えると、その積み重ねが大切だと考えています。 原因の探し方は? 分析のプロセスでは、結果だけでなく原因を深く掘り下げる姿勢が必要です。数字に裏付けられたストーリーを構築するためには、飛びつかず、しっかりと要素を分解して検証することが求められます。やみくもな対応では、納得感や信用を得るのは難しいと感じました。 課題はどこにある? まず、フレームワークなどの問題解決の手法については、理解しているつもりでも実際の問題に直面すると活用できていない部分が浮き彫りになりました。たまたま効率化には成功したものの、その他の面では十分に実践できておらず、今後、時間のかかる業務のプロセス改善に取り組む必要があると考えています。 新知識はどう活かす? また、ABテストといった新たな知識の習得ができた点は大きな収穫でした。勉強の習慣化に向け、意識的な時間確保と無駄時間の削減に努め、受講者のコメントからも自分の表現不足を認識する機会となりました。講座終了後は、講師の授業や動画、受講者の意見を総復習し、理解をさらに深めるつもりです。 図解で見やすく? さらに、シンプルながらも資料に図を取り入れることで、情報を視覚的に整理する試みも始めています。作成技術は向上途上ですが、引き続き動画などでスキルアップを目指していきたいと思います。 仮説の不足は? 一方で、学び続ける意欲はあるものの、仮説を作成する基礎知識が不足しているため、仮説の質や数が十分でなく、次につなげることが難しいと感じました。仕事におけるレアケースの振り返りや因果関係の検討が、これからの課題であると考えています。結果だけに注目するのではなく、その背後にある原因を明らかにすることがポイントとなります。 本質をどう捉える? 今回の学びで特に印象に残ったのは、「目に見えるものにすぐ飛びつかない」という点です。大切な要素は必ずしも目に見える形で現れるわけではないという教訓を、今後の業務にも活かしていきたいと思います。

リーダーシップ・キャリアビジョン入門

リーダーシップで変わる関係性の築き方

リーダーシップ理論で何を学んだか? 今週学んだことの中で特に印象深かったのは、リーダーシップの理論に関する2つのポイントです。 まず1つ目は、マネジリアル・グリッドというリーダーシップの分類方法です。この理論は、人間への関心度と業績への関心という2軸でリーダーシップのタイプを分けます。これまで私は成果至上主義に偏ってしまい、人間への関心が薄れていたことに気づかされました。常に能力を高めることが求められた結果、人について来られない人を見限るような考え方になっていたことに、ハッとさせられました。 パス・ゴール理論の適用方法 次に、2つ目はパス・ゴール理論です。この理論では、有能なリーダーがゴール達成に向けたパスと必要な支援を提供する方法が環境要因と部下の適合要因によって変わるとされます。同じリーダーシップでも状況によって異なるパターンを選ばなければ効果的でないという事実は非常に興味深いです。ベテランに指示が必要ないという先入観や、新人には詳細な指示が必要だという決めつけから離れ、それぞれの状況に応じた適切な行動をとることが大切です。 学びを業務にどう活かす? 私は部下を持っていませんが、他部署の秘書や関係部署の方々に業務改善を提案するシーンで、今回の学びを活用したいと考えています。特に、非効率的な作業がチームに悪影響を与えている人に対して、効率的な作業方法を身につけてもらうことを目指します。これにより、二度手間や無駄な時間を削減し、チームの作業効率を向上させたいと思っています。 効果的なコミュニケーションステップは? 具体的には、以下のステップを踏むことが重要だと考えています。まず、求める結果に結びつく行動に飛びつく前に、コミュニケーションを通じて相手の状況を理解しようとします。そして、マネジリアル・グリッドを活用し、自分の行動に偏りがないかを見直し、相手に過剰な期待をしないよう行動を補正します。 改善提案を浸透させるには? 新しい業務改善方法を取り入れてもらうためのコミュニケーションは段階的に行います。まずは今のやり方に対する満足度や不便に感じている点を聞き、人間への関心を示します。次に、提案する改善案がその人の課題解決に役立つかを相手の視点で考えます。最後に、改善案が相手に合うと判断したら、実行に飛びつくのではなく、相手のスキルや柔軟性に応じて、最適な伝え方と材料を選びます。

クリティカルシンキング入門

切り口で広げる学びの可能性

なぜ着目が大切? ライブ授業で「着目ポイントが大事」と先生がおっしゃっていた言葉が強く印象に残りました。人、時間、物、曜日など、さまざまな切り口で情報を集め、柔軟な分析視点を持つことの重要性を実感しています。 切る基準はどこ? また、「どこで切るかという基準点を持つことで分解の仕方が見える」というお言葉も非常に印象的でした。データアナリティクスの講座で学んだ内容と重なり、より一層理解を深めることができました。今回学んだクリティカル・シンキングとデータ分析の掛け合わせを通して、相手に納得してもらい行動を促すための論理的なプロセスを構築し、プロジェクトを進めていこうと考えています。自社の現状や改善点を明確にし、効果的な広報・採用戦略の構築へと繋げることが狙いです。 戦略はどう整理? 現在、広報業務の中でも特に採用に直結する業務が多いため、自社の強みを活かす事業戦略の検討が重要だと感じています。その第一歩としてSWOT分析を活用し、Strength(強み)、Weakness(弱み)、Opportunity(機会)、Threat(脅威)の4つの視点から、ピラミッドストラクチャーを用いて会社全体の現状を把握しようと考えています。内部環境と外部環境に分け、「着目ポイント」を常に意識することで、多角的に情報を整理する狙いです。 データはどう見る? さらに、データ・アナリティクス講座で学んだ『比較対象を同じに』という考え方を活かし、主張と根拠の整合性を意識してデータを抽出したいと思います。感覚に頼らず、客観的なデータを根拠に説明や提案を行うことで、戦略に説得力を持たせ、実効性のある広報・採用施策の立案につなげることができると考えています。 方法は本当に良い? また、広報業務の一環として、大手求人サイトへの再掲載や新卒採用向けの展示会出展、自社採用サイトでの情報発信など、複数の施策を同時進行で進めています。その中で、「今取り組んでいる方法で本当に良いのか」と一度立ち止まり、作業や考え方を見直すことの大切さも感じています。そこで、ピラミッドストラクチャーとSWOT分析を組み合わせることで、より論理的かつ実践的なアプローチが可能になるのではないかと試行中です。この考え方が正しいかどうかはまだ不確かですが、スタッフとも共有し、実際の施策に落とし込んで検証していきたいと考えています。

データ・アナリティクス入門

仮説×4Pで迫るデータの真実

問題はどこにある? まず、データ分析の出発点として、どこに問題があるのかを明確に特定し、その問題に対して仮説を立ててからデータを集める流れの重要性を実感しました。過去のデータは失敗の原因を探るために、未来のデータは仮説の検証に活用するという視点が新鮮で、漠然とデータを眺めるのではなく、明確な仮説を持って取り組むことで分析の質が大きく向上することが分かりました。 複数仮説は難しい? また、複数の仮説を一から立てるのが難しいため、ビジネスフレームワークの活用が有効であると学びました。たとえば、4Pの視点から事例を考えることで、各観点から仮説を立て抜け漏れなく問題を多角的に捉えられる効果を実感しました。 複数仮説で見抜く? さらに、一つの仮説に固執せず、複数の仮説を立てて決め打ちしないという原則が印象的でした。一つの仮説に偏ると、それを裏付けるデータばかりに目が行きがちですが、複数の視点を組み合わせることで、より客観的な分析が可能になると理解しました。 検証方法は正しい? 仮説を検証する際には、自分が見たい情報だけでなく、反証となるデータも集めることが重要です。比較対象となる情報を確実に収集することで、確証バイアスを避け、より信頼性のある判断が下せると感じました。 費用対効果はどう? また、問題解決の際には、費用対効果を基準に施策を評価する方法も学びました。複数の施策候補がある中で、この指標を活用することで、効率的に優先順位を決め、実行可能な解決策を選択できることを実感しています。 なぜ仮説を並べる? 現場でのインシデント対応についても、調査開始前に必ず複数の仮説を書き出すことが改善につながると感じました。たとえアプリケーションの問題と疑っても、インフラやデータ層の可能性も考慮し、各仮説に対してどの指標やログを確認すれば検証できるか明確にすることで、偏らない客観的な分析が実現されます。 監視の落とし穴は? さらに、システム監視の見直しでは、インフラ層、アプリケーション層、データ層、外部依存という4つの視点に分類し、それぞれで見逃されがちな指標やアラート設定の不足がないかを洗い出す作業を行っています。特に、複数の層にまたがる問題に対しては、層間の関係も意識することで、予兆を捉え、問題が深刻化する前に対策できる体制の構築に寄与していると感じています。

データ・アナリティクス入門

目的を導くデータの羅針盤

最初に何を明確に? 分析に着手する際、何から手をつけてよいのかわからない状態でしたが、まずは「目的」を明確にし、何を知りたいのか、また改善点につなげるにはどうすればよいのかを意識しながらデータと向き合うことが大切だと実感しました。その上で、データ分析の前段階として、比較対象となる条件を整理し、どの条件や項目を設定するかを精査することが、結果の精度を高める鍵であると理解できました。 整理方法はどうする? 授業からは、細かい点まで明確に比較できるように各要素を分けて整理する方法や、項目を一覧化して理路整然と進める手法を学びました。また、その調査結果の意味や期待される効果について問いかけながら項目を設定する重要性、そして各データ項目ごとの感覚の違いを補うために他のデータを参照する必要性についても示唆を得ました。さらに、数字を加工して割合を算出しグラフ化する際は、情報の性質に応じたグラフ(要素間の割合には円グラフ、上下の数値比較には縦棒グラフ、要素間の比較には横棒グラフなど)を効果的に用いる工夫が求められると学びました。場合によっては、実数そのままで比較したほうが効果的なケースもあるという点も印象的でした。 ビッグデータをどう見る? また、スモールデータとビッグデータの違いに触れ、ビッグデータを扱う際には「クレンジング」に注意し、類似性の高いデータを抽出することで、過去のデータを新たな価値に変えていくプロセスの重要性も認識しました。データ分析は、目的と仮説に基づいた切り口の設定、データ収集、加工、発見、そして結論へのプロセスを着実に踏むことが不可欠で、見えている加工データと状況や根拠に基づいた解釈とを組み合わせることで、より説得力のある分析結果が得られると感じました。 広報戦略はどう考える? 具体的な広報戦略を考える際には、施策を大項目から小項目へと段階的に設定し、戦略の目的に沿ってPRのアイディアを複数仮定しました。その上で、各ツールの選択肢や条件を一覧化し、データを当てはめて比較検討することが効果的であるという実践的なアプローチも印象深かったです。 グループ作業はどう? グループワークでは、見えている加工データに状況や他の根拠・解釈を加えて分析する手法が強調され、その具体的な組み合わせ方や実例について、さらに深掘りして聞いてみたいと感じました。
AIコーチング導線バナー

「印象 × 改善」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right