戦略思考入門

目標に一直線!余計を捨てる技

不要を捨てる理由は? 変化する状況の中で最大の効果を得るためには、時には不要なものを捨てる選択が必要であると学びました。しかし、その実行にあたっては、目的を見失わないことや明確な判断基準を持つことが不可欠であり、常にその視点で業務を進めることが大切だと感じました。 どう判断すべき? また、計画を進める中で期待した結果が出ない場合、いつの間にか手段が目的に変わってしまっていることが、自分自身だけでなく周囲にも見受けられます。これを防ぐためには、人、物、金、時間といった各要素における判断基準を常に意識し、最適な答えを導き出すよう努めることが重要だと思います。

戦略思考入門

断捨離で生み出す業務効率革命

捨てる判断はどう見る? 捨てる選択は、ただ単にマイナスなことではなく、成果を上げるために必要な判断であると理解できました。限られたリソースを有効活用するためには、捨てるという選択をする前に基準を設け、データなどを用いて実行することが重要だと学びました。 断捨離の効果は現実? 自分自身の業務においても、限られたリソースを最大限に活かすために断捨離を進めています。実践した内容は部下にも伝え、施策目標に向けてリソースを効果的に活用していく方針です。また、断捨離によって削減できた時間を数値化することで、捨てる選択の重要性をより明確に実感できると感じています。

戦略思考入門

やさしく学ぶ経済性のヒント

どの経済性が重要? コスト低減のためには、「規模の経済性」「習熟効果」「範囲の経済性」「ネットワークの経済性」を理解することが重要です。現状のデータを正確に把握するとともに、外部要因も考慮し、どの要素を活かせるかを見極める必要があると学びました。 属人依存を解消? また、規模の経済性と範囲の経済性については、これまでの製造業での取り組みでも実践してきた内容です。一方で、習熟効果の背景には、特定の個人に依存するリスクが潜んでいると感じています。そのため、属人化の問題を解消するために標準化を進め、習熟効果を効果的に引き出す対策が求められると思います。

データ・アナリティクス入門

データが語る平均の真実

平均計算のアプローチは? 平均の取り方やデータのばらつきを様々な方法で検証することで、より正確な分析が可能になると実感しました。ビジネスにおいて平均値が用いられる場合も、その計算方法や元となるデータの内容をしっかり確認する必要があると考えています。 データ集計の工夫は? また、ERP導入時に用いられるデータ集計機能について、顧客と集計方法を決定する際に今回学んだ考え方が非常に参考になると思いました。さらに、見積提示の際に平均工数を算出する必要がある場合、要件によって結果にばらつきが出るため、算出方法を工夫しながら検討する必要があると感じています。

クリティカルシンキング入門

フレームで紐解く学びの力

視点を広げる方法は? 物事を分析する際に、細かく分解することで広い視点で物事を捉えられるという点が印象に残りました。 MECEの基本はどう? 特に、MECEの考え方について学びました。5W1H、3C、過去・現在・未来といった様々なフレームワークが存在するので、まずはそれらを覚え、有効に活用していくことが重要だと感じました。 実践で成果を出すには? また、MECEはコンサルティング業務において必須のスキルであり、資料作成や社内会議、クライアントとの打ち合わせなど、さまざまな場面で活用できるため、常に意識して実践していきたいと思います。

データ・アナリティクス入門

平均値だけじゃ見えない本質

平均だけで判断? これまで会社内のデータが平均値で提示されることが多く、自分でも平均値だけで判断していた点を反省しました。平均値に加え標準偏差も確認することで、より正確な分析が可能になると考えています。 群ごとに違いは? 市場データを分析する際は、まずヒストグラムを用いてデータのばらつきを把握し、いくつかの群に分けることにしました。各群の標準偏差も確認し、群間での差が出ないよう注意しています。また、各群の平均値や中央値を算出することで、従来の分析との違いを明確にしていくつもりです。

「出す」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right