クリティカルシンキング入門

一貫性で見る提案の極意

経営解決策は何? ファストフード店の事例をもとに、答えを出すべき問い=イシューに対する経営目線の解決策を検討しました。途中、どの解決策を採用すべきか迷いが生じる場面もありましたが、多くの学びを得ることができたと感じています。また、解決策を考える過程で、他の回答とぶれてしまう部分があったため、一貫性を保つ重要性を再認識しました。 一貫性はどうする? 業務上、先方の採用計画に対して提案を行う際にも、一貫性の維持が非常に大切であると実感しています。改善策や今後の提案内容が矛盾しないよう、常に一貫した視点を持ち続ける必要があると感じています。 切り口はどう整理? 提案資料を作成する際には、まず提示された課題に対してどのような切り口があるかを整理し、各切り口に一貫性があるかを確認してから、実際の作業に取りかかるという手順を踏んでいます。こうしたプロセスを繰り返すことで、自然と一貫性のある多角的な提案ができるようになると確信しています。

データ・アナリティクス入門

仮説思考で切り拓く成長への道

仮説検証はどう進む? 問題解決に取り組むためには、複数の仮説を立て、それぞれを短いスパンで検証することが大切です。仮説設定の際には、3Cや4Pといったフレームワークを活用することで、より多角的かつ論理的にアプローチできると感じました。 固執をどう克服する? 私自身の業務では、課題に直面すると日々の経験に左右され、一つの可能性に固執してしまう傾向がありました。仮説はあくまで出発点であるため、複数の視点から検討する姿勢が重要だと学びました。今後は、対策を立案する前に一度立ち止まり、慎重に仮説を設定することで、論理の偏りや抜けを防ぎ、より精度の高い対策に結びつけたいと思います。 書き出す仮説の意義は? また、分析の材料となるデータ収集に先立ち、まずは課題に対する仮説を書き出すことが基本であると感じました。3Pや4Cのフレームワークを利用し、俯瞰的に課題を捉えることで、決めつけに陥らずに検証・結果のプロセスを慎重に実行する姿勢が大切だと再認識しました。

データ・アナリティクス入門

MECEの呪縛から解放される方法

データ収集と分析の重要性は? 日頃からデータ収集、分析、仮説設定、実行サイクルのスピード感を大切にしていました。しかし、「MECEを意識し過ぎず、時間をかけすぎないこと」を講義で聞いて、今後の業務においてもこの点を意識し、実践していきたいと考えました。 効率的な仮説設定と実行方法は? 特に、MECEや分析そのものに過度な労力を費やすのではなく、分析結果を基にした仮説設定、そして何より迅速な解決策の実行と行動に焦点を当てたいと思います。このようにして得られた新たなデータの収集→分析→仮説設定→実行のサイクルをより早く回していくことに注力したいと考えています。 MECE活用術と業務への応用法は? さらに、MECEについては、大項目から小項目へとプロセスを意識して分析項目を洗い出す習慣を、明日から日々の業務の中で身につけていきたいと思います。また、分析にかける時間を事前に設定し、それをもとに効率的に進めていくことも、明日から実施していきたいと考えています。

デザイン思考入門

予期せぬ挑戦で深まる学び

経営層とのズレは? 総務の分野では、明確なゴールや課題意識が設定された状態で業務が依頼されることが多く、経営層と現場の考え方のズレを常に意識しながら問題解決に取り組む重要性を感じました。経営側が示すのは課題定義までであるため、実際に試作品を作る過程で予期せぬ問題が発生することを体験し、学びが深まりました。 AIデザインはどう? 生成AIを活用してデザインを作成する試みは、予想以上に難しいと感じました。自分のイメージを正確に反映させるためには、プロンプトの使い方をさらに工夫していく必要があると感じています。また、思いもよらない結果が得られることもあり、試行回数を意識することが大切だと思いました。 試作の修正ポイントは? 加えて、生成AIの利用はもっと意識的な操作が求められる点、試作後に自ら修正箇所を見出す経験が得られる点、そしてデザイン思考入門で学んだ手法が、自分の予想を超える、または改善された成果を生み出す可能性があることを実感しました。

リーダーシップ・キャリアビジョン入門

対話で拓く課題解決のカギ

どうして理論が鍵? 部下の業務に対するモチベーションを向上させるためには、低下の原因を丁寧に分析することが重要だと感じています。その際、理論の理解が問題解決につながる大きな要因となると実感しました。今後、日々の業務においても分析の視点を重視していきたいと思います。 面談で何が分かる? また、今後予定されている中間面談では、部下自身に振り返りを実施させることで、現状の業務状況や課題を把握する方針が見えてきました。部下に多くを話してもらうことで、具体的な事例が明らかになり、もし課題が見つかれば、その解決策を検討する土台とすることができると考えています。 どうやって課題解決? そのため、まずは部下との面談の機会を設け、直接対話を通じて現状の把握に努めることが必要です。今後の中間面談に向けて、今回の授業で得た学びを実践し、どれだけ多くの課題を認識できるか試していきたいと考えています。具体的な事例を引き出すことで、より効果的に問題解決へとつなげられるはずです。

アカウンティング入門

数字が語る、企業の秘密

損益計算書で何が見えた? 損益計算書を読み解くことで、その会社のおおよそのコンセプトが把握できると感じました。たとえば、あるカフェの例では、売上高が高いのに対し売上原価が低いことから、顧客単価が高いと判断できるのだと思います。つまり、顧客単価を高めるために特別な品物や価値を提供している可能性を、損益計算書から読み取ることができると学びました。 新聞表現は信頼できる? また、初回のビデオで述べられていたように、新聞の見出しにある言葉だけで判断するのではなく、実際の損益計算書を読み解かないと、誤ったイメージを抱いてしまう危険性があることに気づかされました。 原価対策はどうする? 今まで自社の損益計算書を直接確認したことはありませんが、営業としてコストを算出する際、弊社は原材料費の割合が高いだろうと予想しています。原材料費は性質上削減が難しいため、その他の部分でどこかコスト削減や改善が可能な点がないか、今後も読み解く力を身に着けていきたいと考えています。

クリティカルシンキング入門

伝わる言葉で魅せる学び

言葉の使い方は? 授業を通じて、言葉を正しく使い、語句や言い回しにも注意を払うことの大切さを学びました。また、長い文章は適宜区切ることで、相手に伝わりやすくなることも実感しました。 理由づけって何? 物事の理由づけにはさまざまな切り口があり、相手の立場や状況に応じて最適な理由づけを選択することが重要だと理解しました。自分の主張を効果的に伝えるためには、柱となる理由づけを明確にし、その際に対となる概念を考慮することで、説得力が高まると感じました。さらに、具体的な例を挙げることが、説得の効果を高める手法として有効であると学びました。 伝わり方はどう? 日々の業務において、相手に内容が正確に伝わっていないと感じる場面があるため、まずは400字の文章を書き出すトレーニングから始めようと思います。また、会議でのプレゼンテーションにおいても、ピラミッド・ストラクチャーを事前に作成することで、論理的な構成を整え、意見を分かりやすく伝えることができると感じました。

データ・アナリティクス入門

仮説とデータで切り拓く未来

データ分析で何を学ぶ? 今週は、データ分析による業務課題の可視化や、仮説構築から分解・深掘り、施策立案に至る一連の流れを体系的に学びました。全体平均だけでは見えないグループごとの傾向把握の重要性や、セグメント別分析を通じてボトルネックやインサイトを抽出するプロセスが特に印象に残りました。具体的なケーススタディを通して、満足度や成果指標を分解することで課題の本質に迫るアプローチを体験できたことは非常に有意義でした。 営業分析をどう活かす? また、今回学んだ分析プロセスや分解思考は、自身の業務、特に営業活動にも応用可能だと感じました。たとえば、営業メンバーの訪問件数や提案内容、業界別の成約率、失注理由などのデータを収集・分解し、チームや個人、顧客属性ごとに傾向を分析することで、属人的な営業から再現性の高いプロセス型営業への転換が期待できます。さらに、成績上位者の営業プロセスを可視化してナレッジを共有することで、組織全体のレベルアップに貢献できると考えています。

データ・アナリティクス入門

データが導く、未来への一歩

平均の種類って? これまで、平均値の代表指標として単純平均や加重平均のみを使用してきましたが、今回、幾何平均や中央値という視点を学んだことで、分析の幅が広がったと実感しています。特に幾何平均や標準偏差については再度復習し、理解を深めていきたいと考えています。 Excelで相関は? また、実務で既に活用している散布図について、相関係数や決定係数をExcelで算出する方法を学びました。この手法によって、データに説得力が増し、意思決定を行う際のサポートになると感じています。 分析視点はどう? さらに、比較対象に応じて適切なグラフの選択方法も学んだため、今後の業務においてスムーズに活用し、より多くの知識を吸収していきたいと思います。とくに、プロジェクトの効果分析やプレゼンテーションの際、これまで感覚的に行っていた分析を、インパクト、ギャップ、トレンド、ばらつき、パターンという5つの視点から意識することで、より体系的なアプローチが可能になると感じています。

データ・アナリティクス入門

実験で見つける解決策の秘密

全体をどう把握する? 問題解決に向けてまず行うべきは、全体のプロセスを細分化し、どの部分に原因があるのかを明確にすることだと感じました。その上で、解決策を検討する際には、複数の選択肢を洗い出し、各々の方法に根拠を持たせながら、最も有効な手法を絞り込むことが重要です。さらに、A/Bテストなどの実験的手法を用いて仮説の検証を行い、データに基づいたアプローチでより効果的な解決策を見出すことができると学びました。 比較視点はどこで? また、社内イベントの申し込み状況を分析する際には、部署、年代、性別、新卒とキャリアなど、様々な切り口で比較することで、どの部分に問題があるのかを把握する方法が有効だと感じました。問題が特定された後は、改善を目指すターゲット層に対して、適切な広報戦略を講じることが必要です。例えば、ある部署の参加率が低い場合、その部署で影響力のあるメンバーに協力を依頼し、効果的な宣伝活動を展開することで、全体の参加率向上につなげる方法も考えられます。

クリティカルシンキング入門

複眼で捉える気づきの瞬間

グラフで何がわかる? 数字の威力とは、単に実数として存在する数値をそのまま見るのではなく、グラフなどの視覚的表現を通じて、数値だけでは読み取れなかった示唆を引き出す点にあります。どこでデータを区切るかでその解釈が大きく変化するため、ひとつの見方に固執せず、複数の切り口から考えることが求められます。 全体像はどう捉える? また、データを複数の角度から実際に分解することで、新たな気づきを得ることができます。分解した結果からすぐに結論を出すのではなく、一度立ち止まり、改めて考察するプロセスが非常に重要です。その際、目的に沿った分析ができるよう、全体で何を捉えるのかを明確にしておく必要があります。 売上推移をどう見る? さらに、売上推移の現状把握や仮説立てにも多角的な視点が活かされると感じました。個人別、チーム別、事業部別といった区分だけでなく、月間、四半期、前年同期比や商材別など、さまざまな分類方法を用いることで、より深い分析が可能になるでしょう。

アカウンティング入門

本音で語る経営のレシピ

価値と資金はどう? 事業を行うにあたっては、まず提供する価値や事業の目的を明確にし、それに必要な要素を検討した上で資金調達を進める必要があります。しかし、調達できる資金は無尽蔵ではないため、何にどれだけ投資し、どこを削減するかという現実との折り合いが経営の核心となります。 お金の使い道はどう? 具体的には、まず投入するお金の使い道と、受け入れる収入の額が適切であるかどうかを、他社や過去の事例と比較しながら検討します。次に、予算編成の段階で費用も収入もゼロから見直し、無駄を省いた現実的な計画を立てることが求められます。そして、これまでのやり方にただ沿うのではなく、現状を疑いながら改善点を洗い出す姿勢が重要です。 返済計画はどう? さらに、売上や利益の予測、返済計画をどう立てるかについても慎重に考える必要があります。もし予想が外れた場合や返済が困難になる状況に直面しても、事前に十分な備えができるようにすることが、健全な経営に欠かせないといえます。
AIコーチング導線バナー

「出す」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right