リーダーシップ・キャリアビジョン入門

気づきを引き出す学びの術

なぜ報酬だけじゃない? モチベーションを上げるためには、まず相手のやる気スイッチがどこにあるのか把握することが大切だと感じました。そのため、衛生理論、動機付け要因、欲求五段階説といったフレームワークを意識し、相手が何を求め、不足しているのかを見極めるよう努めたいと思います。報酬(金銭的インセンティブ)についても、一定の効果はあるものの、一定以上ではモチベーションに大きな影響を及ぼさないことから、称賛や承認など、すぐに始められる方法の重要性にも気づきました。 どうして振り返る? また、仕事の振り返りに関しては、業務が終わったらそのままにしてしまうことが多かったですが、リーダーとしてメンバーの振り返りをサポートするために、より良い仕組み作りを目指したいと考えています。まずは自ら率先して良い面を伝え、相手に自分の言葉で語らせて気づきを促すことの重要性を改めて認識しました。 どうして記録が役立つ? 9名のチームメンバー各々のモチベーションの違いを踏まえ、日々観察してそれぞれの特徴をカルテのように記録することに努めます。フィードバックの場面は半期に一度にとどまらず、月1回のミーティングなど、相手の言葉を引き出す機会を増やしていく予定です。 自分自身の経験やアドバイスの欲を控え、メンバーが何にモチベーションを感じるのか、やる気の源泉はどこにあるのかを深く考えることが、チーム運営において最も重要だと思います。日々の業務のなかでメンバーをよく観察し、フィードバックに役立つ記録をつける習慣を作ります。プロジェクト終了後はまず称賛やねぎらいの言葉をかけ、その後で気づいたポイントや改善点を、メンバー自身の言葉で語らせるようにします。相手から話を引き出すための根気強さが大切であると常に意識していきます。

デザイン思考入門

限界突破!アイデア革新への道

グループの意見整理は? 私の仕事では、ワークショップで複数のグループが参加し、ブレインストーミングを行いながら、各グループでKJ法を用いてアイデアや意見の整理を常に行っています。各グループはツリー状にまとめることで、トップダウンとボトムアップの視点から課題を抽出し、その後、各グループで共有しながら、端的な言葉でコンセプトにまとめています。 KJ法の難しさは? しかし、一方でKJ法だけでは整理しきれない単独のアイデアや意見の扱いが難しいと感じています。また、KJ法の性質上、多数決的な判断に陥る恐れもあるため、得られたアイデアや課題をペルソナを活用して具体化したり、カスタマージャーニーで視覚化することが重要だと考えています。 迅速なプロセスの鍵は? さらに、アイデア自体が実際の成果に結びつく確率は低いため、アイデア出しからペルソナ作成、カスタマージャーニーの完成までのプロセスをいかに迅速に回すかが鍵となります。これを実現するためには、プロジェクトチームの編成、アイデア出しのための環境作り、そしてフィードバックの方法などを工夫する必要があります。 発想の工夫はどう? アイデア出しにおいては、常識にとらわれないぶっ飛んだ発想を恐れずに出すことが重要です。そのため、アイデア出しの場や雰囲気の整備に加え、日常的に物事を正面だけでなく、さまざまな角度から眺め、俯瞰する習慣を持つことが必要だと実感しました。また、出されたアイデアを文字にまとめることで、新たな発想や次のステップのインスピレーションが得られることも大きな収穫でした。 新手法への挑戦は? 今後は、これまで試してきた方法以外にも新しいアプローチを取り入れ、どの手法がどの状況で効果的かを引き続き研究していきたいと思います。

戦略思考入門

捨てる勇気が生む未来の可能性

捨てる重要性とは? 捨てることの重要性は、明確な判断軸を持って取捨選択することにあります。その判断基準は、単一の要素だけでなく複数の要素から多面的に検討することが必要です。また、仮定思考を用いて未来を想定しながら進めることも必要です。 どんな評価が重要? 今回学んだことの一つとして、売上や利益の定量的な基準だけでなく、顧客との関係性といった定性的な基準も含めて、投資対効果(ROI)を考えて優先順位を決めることが改めて整理できました。捨てることが顧客の利便性を増す場面もあり、新しい意見を取り入れることで無駄を省くことができます。自社でできないことは外部に任せることも重要です。私自身も業務遂行で違和感を覚えたことを業務改善に活かしてきました。これからもメンバーの意見を重視し、改善に繋げていきたいです。 リソースの使い方は? 営業組織として、限られたリソースで最大の成果を出すための取捨選択はこれまでも行ってきましたが、さらなる磨きをかけたいと考えています。働き方の面では、長時間労働になりがちな現状を変え、チーム全体の生産性向上に努めたいです。具体的には、自組織で行わない業務は他のリソースに任せたり、その業務が顧客利益に直結するかを見極めたりすることが重要だと感じました。 顧客戦略はどう? 最終的には、自組織の顧客戦略にもこれらの考え方を応用していきたいです。顧客アプローチの優先順位付けでは、売上や利益の定量的な要素だけでなく、顧客との関係性、成長予測といった定性的な基準も取り入れたいと考えています。判断基準や軸を明確にし、それをメンバーに伝えることが重要であると感じました。過去の経験や直感に頼るだけでなく、論理的な基準で判断する姿勢が求められると反省しています。

クリティカルシンキング入門

数字の見方が変わる!グラフの魔法

数字を視覚化するポイント 数字の分解について、私は4つの大きな学びがありました。 第一に、数字を目で見るだけではその差が分かりづらいという点です。グラフにして視覚的に確認することで、数字の差や傾向が見えてきます。また、複数のデータをグラフ化して掛け合わせて見ることにより、それまで見えていなかった部分も知ることができます。 グラフ作成のコツは? 第二に、グラフを作成する際に機械的に5や10で刻んでしまいがちですが、そのグラフの目的に合わせて刻み幅を考えることが重要です。顧客層であれば、学生と社会人を意識した年代で分けるなどの工夫が必要です。 多様な切り口で分析するには? 第三に、数字を様々な切り口で分解することで傾向をより詳しく知ることができます。逆に、細かく分解しないまま分析を行うとミスリードにつながる可能性があります。 MECEの活用法を知る 最後に、MECEを使って漏れなくダブりなく分解することが大切だということです。まず全体を定義してから、目的に合わせた分解方法を考えることが必要です。 さらに、留学プログラムの参加者の分析(地域別、性別、年齢別、分野別など)や助成金の配分、アンケートや提出物の回収の際の分析(期日までに全員回収するのは難しいため、回答期日の分布を分析して効果的なリマインドタイミングを導き出す)にも、今回学んだ数字の分解方法が活用できると感じました。 学びを実践でどう活かす? 今週学んだ内容を改めてノートに書き起こし、職場で確認できるように目に見えるところに置く。実際に数字を分析する機会はなかったが、1つの留学プログラムで複数の切り口を考えて分解し、得られた結果を同僚と共有することで、実践的なスキルアップにつなげることができると思いました。

クリティカルシンキング入門

問いを重ねて、思考の旅を楽しむ

どうして問いに注目? 総合学習における南守島での観光客増加に関する町長の問いは、経営に通じる面があり、その重要性を改めて認識する良い機会となりました。この学びを通じて、Week1からの内容を振り返ることができました。また、「問いを意識し続ける」ことは、日常生活にも応用可能であり、思考を鍛えるトレーニングになると考えています。例えば、立地条件が悪そうに見える近所のコンビニが繁盛している事例などでは、経営面と利用者の視点から問いを重ねることで、仮説による答えが導き出せるのではないでしょうか。問いを続けることで、具体的な事例と抽象的な概念を行き来する思考の旅を楽しめるようになりたいと感じています。 戦略はどう検討する? 事業戦略を含む経営企画の担当として、今回の観光客増加の課題と対策を考えることは自社の事業課題の分析や洗い出しに通じており、今後の事業計画にも役立てたいと思います。また、社会人経験が20年を超えた今、慣れや思考の停止を感じることもありますが、「そもそも、どうなのか?」という視点を常に持つことで、業務改善に繋げていきたいです。業務においては必ず相手が存在するため、相手を意識した問いを持ち続け、答えを見出す姿勢を大切にしたいと考えています。 思考スキルはどう磨く? クリティカルシンキングは基本的な思考法として、仕事だけでなく日常生活にも活用していきたいと思います。近所のコンビニやスーパーの経営状況、報道される事件の背景などについて考えることは、思考の訓練になると考えており、常に「問い」を持ち続けて思考レベルを向上させたいと思っています。また、思考のスキルだけでなく、資料作成や文章作成のスキルも重要であることを改めて認識しました。今後はこれらの質もさらに磨いていきたいです。

クリティカルシンキング入門

多角的視点で切り込む課題の核心

どうしてイシューを選ぶ? 課題に向き合う際、まずはイシュー(最優先課題)を特定し、その対策に取り組み、対策後に次のイシューへと順次対応していくという繰り返しで、効果的な課題解決が可能であると学びました。 客観的視点の意義は? イシューを特定するためには、起こっている事象について客観的かつ多角的に事実を把握し、分析する必要があります。主観や偏ったバイアスにとらわれると、すべての課題を洗い出すことが難しくなるため、あくまで客観的な視点を維持することが重要だと再認識しました。 優先順位はどう決める? また、洗い出した事実や課題を分解し、分析して優先順位をつける際にも、主観やバイアスを排除した客観的・多角的な判断が求められます。この点が最も難しい取り組みであると感じました。 計画管理の秘訣は? 私の職務においては、事業計画を策定し、その計画通り、あるいは逸脱した状況を補完しながらプロジェクトの管理を行い、計画の達成を目標として部署のマネジメントを実施しています。計画と実績の差異に対処し、次期の計画を策定する流れの中で、客観的かつ多角的に事実分析を行い、優先課題を特定して対策を講じる一連のプロセスに、今回の研修で学んだ方法や意識すべき点が大いに役立つと感じました。 実績乖離をどう乗り越える? 今後、計画と実績の乖離に直面した際には、以下の3点を意識して取り組んでいきたいと思います。 問題の根源を探る? 1.事象や問題を洗い出す際には、主観や無意識のバイアスを排除して、客観的かつ多角的に見直すこと。 2.洗い出した事象や問題の原因を分解・分析し、本質的な起因を探ること。 3.多数の問題や課題の中からイシュー(最優先課題)を特定し、その対策を実施すること。

デザイン思考入門

解決策じゃない!問いから始まる学び

アンケート変更の必要は? 自社サービスのユーザー向けに定期的に開催しているイベントでのアンケートについては、これまで項目を変更せずに実施してきました。項目変更を行うと比較が難しくなると考えたためです。今後は、アンケート内容に本当に変更の必要があるのか、改めて問い直しながら検討していきたいと思います。 インタビュー内容は羅列になる? ユーザーインタビューでは、インタビュー後の記事化において、質問内容と返答が単なる羅列になりがちな点を改善する必要を感じました。コーディングを実施することで、情報の分析がしやすくなるとともに、他者へ伝わりやすいアウトプットにつながると考えています。まだ試行段階ですが、各担当者と意見交換の場を設け、特にインタビューに関しては、こちらが意識してヒアリングしないと暗黙知を引き出せないため、事前に質問項目に組み込むか、必須項目としてルールを決めることにしています。 定性定量の違いは何? また、今回の取り組みで、解決策を前提に課題を定義しないという考え方や、分析データの収集方法には定量分析と定性分析の2種類があることを認識しました。定性分析は、感情など数値化や可視化が難しい情報の解析に適しており、暗黙知と形式知の両面を理解することが大切です。暗黙知については、こちらから意識して引き出す必要があると感じています。 課題設定はどう見直す? これまで、課題は解決策をあらかじめ想定したうえで捉えていたため、今回の「解決策ありきで課題を定義しない」という視点は大きな気づきとなりました。定性分析の難しさを実感しているため、まずは自分自身のナノ単科におけるカスタマージャーニーを作成し、感情の可視化の練習からアプローチのコツをつかめるよう挑戦していきたいと思います。

データ・アナリティクス入門

データ分析で失敗しないための初めの一歩

データ分析の初め方とは? データ分析を始める際、最初に注意すべき点は、いきなり「How」に飛びつくのではなく、まず原因を特定することが重要です。また、何を理想的な状態とし、そのギャップをどう見なすか、関係者との合意を得ておくことが肝心です。 MECEの概念とその活用法 MECE(Mutually Exclusive, Collectively Exhaustive)の概念については、有意義な切り口で切り分けることが大切ですが、乱用には注意が必要です。 データ分析の精度を高めるには? データ整理とデータ分析の違いや、分析の精度と説得力の関係については、明確な理解が求められます。例えば、データ分析がどのケースにより合致するかも考慮すべきです。現状から改善を目指すケース、あるいは未来に向けた戦略的なケース、それぞれに適したアプローチがあります。また、需要予測と異常検知といった異なるケースでの適用の違いも理解しておくと役立ちます。 ケースAの分析方法は? ケースAでは、例えばWEBサイトからの問い合わせデータや営業がSFAに入力した案件データを分析することが考えられます。現状の問い合わせ数に基づき、来期の目標やポテンシャルを過去のデータから算出するために変数分解を行います。 ケースBでの説得力あるストーリーの構築法 一方、ケースBでは、例えばグループウェアの切り替えに際し、役員を説得するためのデータ準備が求められます。説得力のあるストーリーを構築するために、現実的に入手可能なデータを調べることが重要となります。 具体的な結果を得るために これらのポイントを踏まえ、データ分析の取り組みを進めることで、より具体的で説得力のある結果を得ることができます。

データ・アナリティクス入門

ABテストで見える進化の軌跡

どうプロセスを分解する? どこに問題があるかを明確にするため、プロセスを段階ごとに分解することが重要です。まず、問題発生箇所(Where)を複数の切り口で特定し、それぞれに対してABテストを実施することで仮説検証を行います。こうした手法は、効率的なコストパフォーマンスに寄与すると同時に、その後の具体的な取り組み(HOW)を事実に基づいて策定するために欠かせません。 どうデータを把握する? 私は製薬会社でMRを担当しており、担当エリアの製品が伸び悩んでいる状況をデータ分析によって明確に把握しました。売上や市場シェアの推移を詳細に検証することで、次のアクションに向けた具体的な問題点の特定が可能となりました。たとえ、担当者固有の感覚や直感に頼りがちな部分があっても、事実ベースの行動こそが仮説検証を丁寧に進める鍵であると実感しています。 何が効果的なABテスト? 具体的なABテストとしては、Aパターンではメディカル専門部署との同行訪問を実施し、Bパターンでは他施設での成功事例を共有する取り組みを行いました。一定期間のテストを経て、どちらのアプローチがより効果的であったかを定量的に評価し、その結果を基盤に最適な施策をエリア全体に展開する方向性を見出すことができました。 どう成長を促進する? 担当エリアの製品成長を促進するための手順は、まず現状把握として売上や市場シェアを分析し、成長が停滞している顧客層を見定めることから始まります。次に、影響力のあるキーパーソンや波及効果の大きい対象をリストアップした上で、仮説を設定しABテストを実施します。その後、テスト結果を定量的に比較し、最も効果が高い施策をエリア全体に適用し、次のアクションに反映させるという流れで進めています。

デザイン思考入門

共感でつなぐ学びの軌跡

共感の価値は? デザイン思考における「共感・課題定義・発想・試作・テスト」の5つのステップについて、2点の学びがありました。まず、共感の重要性です。共感とは単に同意することではなく、お互いが認識できる共通の「何か」を見出すことだと感じました。 非線形の魅力とは? 次に、これらのステップは非線形に繋がっているという点です。特定の順序にこだわるより、行きつ戻りつのプロセスを経ることが、各ステップが互いに影響し合い、より良い思考とプロダクトにつながると実感しました。 意見共有は難しい? また、システム開発の上流工程では、プロジェクトメンバー間でどのように意見を交わし、定義を共有するかが非常に重要です。システム思考がその施策として大きな役割を果たす可能性はあるものの、実際にどの程度効果を発揮するかはまだ未知数です。一方で、プロジェクトメンバー間で「共感」がどこまで実現できるのか不安に感じることもあります。これまでの経験から、どうしても「同感」に偏ってしまい、ほぼ100%の合意が必要とされる傾向があるように思えるからです。すなわち、MUSTとWANTの区別なく、すべてが必要とされる状況が根付いているのではないかと考えています。 今後の課題は? この点については、今後学びながら整理し、業務に活かしていきたいと考えています。具体的には、まずは受講生の仲間に「共感」についてヒアリングを行い、意見を共有してみたいと思います。ワークは課題中心であるため、私個人の興味本位で話を進めるのではなく、オフ会や自主的な懇親会などの機会を利用して課題提起を試みるつもりです。また、実際の仕事の中で共感と同感の線引きがどのように行われているのかも観察しながら検証していきたいと考えています。

データ・アナリティクス入門

データ分析の基礎から見直す重要性

比較対象を誤解することの影響は? 分析の基本は比較にあります。特に、比較する対象が「類似性の高いもの同士(Apple to Apple)」であることを意識する必要があります。これまで自身で行ってきたデータ分析において、その認識が誤っていたと感じました。しばしば「異なるもの同士(Apple to Orange)」を比較しようとしていたことに気づいたのです。 データ作成の目的を明確にするには? また、データ作成の際には、まず「目的」を明確にすることが重要であると学びました。ライブ授業で問題に取り組んだ際、大切なポイントを見落としていたことがありました。今後、データ分析を行う際には、まずその分析の目的を再確認し、その上で分析を進めていきたいと思います。 仮説を線で考えることの重要性 さらに、仮説立てに関しても、全体像を広く理解し、点ではなく線で考えることが重要です。これにより、いくつかの仮説をより具体的に報告できるよう努めたいと思います。特に、SEOに関わる数値分析や会員登録までのユーザー動線の見直しに活用できると感じています。 効果的なデータ分析方法とは? データ分析の目的としては、以下の点に注意したいと考えています。 ・さまざまなタイプのデータの特性と、陥りがちな分析の落とし穴に注意する。 ・定量データを用いた分析の重要性を認識し、その活用を図る。 比較と改善のためのディスカッションの重要性 最近は、コンペティターのメディアとの比較や、ユーザー登録導線の参考メディアやランディングページと自社サービスの比較を十分に行えていませんでした。これを改善するため、チームメンバー全員でグループディスカッションを行い、検証結果を導き出す方法を取りたいと思います。

クリティカルシンキング入門

問い続ける学びの軌跡

イシューはどう見極める? まず、イシューを特定するためには、必要なデータを揃え、各データの特徴が明確になる切り口から捉えることが大切だと感じました。その上で、結論を導くためにはMECE(漏れなくダブりなく)の視点で情報を分解し、ロジックツリーを活用して全体の構造を整理していくアプローチが有効だと思います。 本質はどう捉える? また、イシュー自体は疑問形で問いかけを続けることで、その本質や輪郭が浮かび上がってくると実感しました。今、自分たちが本当に考えるべきことは何か、解決策を急ぎすぎずにじっくりと検討する姿勢が重要であると感じています。どの問題を課題として捉えるべきかを問い続けることが、正しいアプローチへとつながるのだと実感しました。 論点はどこにある? さらに、プロジェクトやチーム内の課題、タスクの対応において、この手法は非常に有用だと感じました。担当している作業の中でどこに問題があり、何が論点なのか、またいつまでにどのような解決を図るべきかといった点を明確に把握するためのツールとして活用できると考えています。これにより、チームや上司、クライアントとの認識共有がスムーズになり、問題解決への具体的なステップが見えやすくなるでしょう。 説得力はどう伝える? また、社内研修や新技術の勉強会など、さまざまな場面においても、同じ手法で問題点や論点を整理することができる点に大いに役立つと感じました。考えた道筋を正確に日本語の文章に落とし込み、しっかりとした説明ができるようにすることは、説得力を高める上でも非常に重要です。問題点を混ぜ合わせず、具体的にどこにどのような課題があるのかを順序立てて整理していくことが、確かな解決策を見出すための鍵になると考えています。

「出す」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right