データ・アナリティクス入門

仮説から挑む数字の物語

仮説はどこから来る? 分析の基本は、まずさまざまなデータを比較することにあります。細かなデータやグラフを確認する前に、自分なりの仮説を立てることが大切だと感じました。 3つの軸は何が違う? ここでは「プロセス」「視点」「アプローチ」という3つの軸が重要です。プロセスでは、目的を明確にし、仮説を立て、データを収集して、その仮説を分析により検証します。視点については、インパクト、ギャップ、トレンド、ばらつき、パターンなどに着目します。そしてアプローチとして、グラフや数字、数式を活用する方法が挙げられます。 可視化で何が分かる? 比較のための可視化には、数字に集約する方法、目で見て把握できるようグラフ化する方法、さらには数式にまとめる方法があり、状況に応じて適切な手法を選ぶことが効果的です。 代表値はどう見る? また、データを見やすくするためには「代表値」と「分布」を確認することがポイントです。代表値には単純平均、加重平均、幾何平均、中央値などがあり、ばらつきを把握するには標準偏差が有用です。特に、95%のデータが含まれるという2SDルールは、分析の信頼性を判断する際に役立ちます。 ノーム値は意味ある? クライアントのノーム値を算出して、予算シュミレーションに活用する手法も魅力的です。さらに、業界ごとにどの枠が効果的か比較検証することで、より適切なアプローチを模索することが可能だと思います。 実数値で検証できる? 実際のデータを利用してノーム値を算出する試みは、非常に価値があると感じます。社内にある関連データの算出方法や分析手法を参考にしながら、実数値での検証を進めることで、より実践的な知見が得られるでしょう。

データ・アナリティクス入門

平均だけじゃ語れない真実

平均値だけで判断? 平均値は、データのばらつきを反映しないため、平均値近辺に多くの数値が存在するとは限らず、両極端な数値が混在している場合もあります。そのため、平均値だけに頼ると正確な分析が難しくなることがあります。 標準偏差はどう見る? 標準偏差を加えることで、数値の分布やばらつきを把握することができ、平均値と合わせてデータの傾向を見極めるのに有用です。実際、ある施策の効果検証で前後の数値を単に比較した際には、有意な変化や傾向が見受けられず困惑した経験があります。しかし、標準偏差を算出して分布図に落とし込めば、より明確な傾向が掴めたかもしれないと感じました。 代表値の使い分けは? また、代表値の使い分けにも工夫が必要です。単純平均の他に、値ごとに重みを付けた加重平均、成長率や比率を評価する際に有効な幾何平均、そして外れ値の影響を受けにくい中央値を適宜使い分けることで、より正確な傾向分析が可能となります。 具体例はどう見る? たとえば、男性の育児休業取得日数については、年間の平均値だけでなく、外れ値として極端な値が含まれる場合には中央値を用いて経年の傾向を把握します。さらに、法改正の影響で急増している取得率の増加率を幾何平均で算出し、次年度以降の予測やKPIの設定に活かすといった工夫が重要です。 現業務を再確認? 現在の担当業務においては、従業員の健康診断データ、施策実施前後の変化、女性管理職比率の推移、男性育休取得率の推移など、今回学んだインパクト、ギャップ、トレンド、ばらつき、パターンといった視点およびグラフ、数字、数式といったアプローチを用いることで、見落としがちな傾向や変化を改めて確認することが求められます。

データ・アナリティクス入門

共通認識が導く納得の意思決定

なぜ納得できない? これまでのGAiLでは、解説を読むたびに納得感を得られる部分が多かったのですが、今週はどうしても納得できない点がありました。設問3のデザイン変更の方法案について、解説では「コスト」「スピード」「意思疎通」に点数を付け、その結果として最適なものは「案3」とされていました。しかし、私が認識していた各指標の点数が異なっていたため、別の案を回答してしまいました。 共通認識は必要? この経験から、意思決定支援を行う際には、分析結果に基づいて「How」を考える前提として、共通認識(認知の歪みがない状態)を持つことが非常に重要だと感じました。たとえ分析結果から具体的な手法が導かれたとしても、共通認識が欠けていれば相手に納得感を与えるのは難しく、実際の実行段階で問題が生じる可能性があります。そうした意味で、仮説をしっかりと研ぎ澄ますことが大切だと理解しました。 A/Bテストはどう見る? A/Bテストについては、ダイレクトリクルーティングにおけるスカウト送付の場面で有用と考えています。たとえば、①スカウトメールの件名、②本文、③添付の求人票といった要素で比較検証を行う方法が挙げられます。一方で、各グループ間の介入の違いはできるだけ絞る必要があるため、比較対象が不必要に増えないよう、明確な仮説に基づいて取り組むことが求められます。 どう候補者を絞る? また、ほとんどの場合、データサイエンティストという職種名で求人票が作成され、スカウトメールが送付されているため、まずは候補者を①データサイエンティストとしての経験の有無と、②データサイエンティストを希望しているかどうかの2点で分類し、返信率への影響を検証していきたいと考えています。

データ・アナリティクス入門

ロジックツリーで分析力がアップしたWEEK2の成果

Whatの重要性とは? 問題解決のステップにおける「What」の重要性として、「あるべき姿と現状を埋めるギャップ」を意識することが挙げられます。ここでも、正しい状態(ありたい姿)と現状の「比較」が必要であることを学びました。 ロジックツリーの活用は? 問題の明確化・特定の段階で活用できるフレームワークとして、層別分解と変数分解があります。特に変数分解の観点でMECEを考えることは、要素の抜け漏れが少なくなる可能性が大いに期待できると感じました。 また、ロジックツリーのコツ・留意点として、「感度の良い切り口をたくさん持っておく」という点が重要です。業界や会社ごとにキーとなる要素があるため、その観点をロジックツリーに組み込めるよう、日ごろから情報収集に努める必要があります。 分析スキルをどう向上させる? 分析を行う際、目の前の情報に飛びついて、初めから原因を勝手に予想してしまい、本質を捉えきれていない分析を行うことが度々ありました。面倒くさがって「What」を適当にしてしまうこともありましたが、分析は「What」と「Where」にこそ時間をかけて問題を特定すべきだと感じました。しかし、「What」を考えるにあたって、まず何をMECEを意識して分解するかが重要になります。自身の仕事においても、まず「What」「Where」のステップのクオリティを上げられるように努めていきたいです。 学びを実務にどう生かす? WEEK2で学んだことの共有やロジックツリーのフレームワークを活かせる業務の選定、過去のキャンペーンを取り上げて、講義と並行して学んだことをアウトプットできるような分析の場を設けることにも取り組みます。講義終了後、チームに共有します。

データ・アナリティクス入門

ABテストで効果を最大化する方法とは?

問題解決ステップの理解をどう深める? 問題解決の4つのステップについて学んだ中で、特にWhy(原因分析)とHow(解決方法の立案)、そしてその手法としてABテストについて理解が深まった。ABテストはシンプルで運用や判断がしやすく、低コスト・低工数・低リスクで実行可能なため、非常に活用しやすい。実施の際には、目的設定、改善ポイントの仮説設計(何でも変えるのではなく、意図を持って比較しやすくする)、実行(十分なデータ量を確保)、結果検証の流れが効果的である。ただし、Web広告の場合には時間帯や曜日、プラットフォームなど他の条件が異ならないように注意が必要だ。 ABテストで問題解決の精度を高めるには? さらに、ABテストは「データ分析を通じて問題解決の精度を高める(Check)」と「仮説を試しながらデータを収集し、よりよい問題解決につなげる(Act)」を迅速に行うことができるため、非常に効率的だ。 例えば、メルマガでイベント告知を行う際にABテストを活用すれば、それぞれ訴求する内容を変えて、どの訴求ポイントが効果的かを検証することができる。しかし、解決案をひとつに絞るのは良くないので、SNS投稿など別のアプローチも併用して検証する必要があるだろう。 問題解決の全体像を把握するには? これまで、ランディングページ(LP)作成や広告を打つ際、一度行ったABテストの結果に満足して長期間使用していたことを反省。常に仮説を持ち、様々な角度から検証して改善していくことが必要だと感じた。また、問題解決の4つのステップ(What→Where→Why→How)の順番を意識し、単に解決策を考えるだけでなく、その全体像を把握することにリソースを費やすことを心がけたい。

戦略思考入門

差別化の鍵はターゲット明確化!

良い差別化施策の基盤は? 今週の学習を通じて、良い差別化の施策には、まずターゲットとなる顧客を明確にすることが重要だと学びました。その上で、顧客にとってどのような価値があるか、競合他社と比較した際の優位性、そしてその実現可能性や持続可能性が検討されたものであることが求められます。私はこれまで、おおざっぱな打ち手を考えがちでしたが、ターゲット顧客の明確化から始めることで、戦略に一貫性を持たせることの重要性を理解しました。また、自社の強みをしっかりと整理するためにフレームワークを活用する必要性にも気づかされました。 自社の強みを見つける方法は? ターゲット顧客を明確にすることが差別化の基盤であることを理解し、自社の強みをフレームワークで整理するという実践が価値を高めるためのブレイクスルーとなるでしょう。 カスタマーサポートでの差別化は可能? 昨年末から現在まで、自社のサービスや事業において、どう新たな価値を提供していくべきかを考えてきました。特にカスタマーサポートやカスタマーサクセスにおいて、その領域でどう差別化された強みを活かせるのかが大きな課題です。この点に関しても、今回学んだ視点や手順に沿って、特にVRIO分析を用いて強みを整理し、ターゲット顧客を明確にすることで、より広い視野で戦略を考えたいと思います。 新サービスのアイデア生成手順 まずは、自社のサービスや事業における強みをVRIO分析で書き出します。その後、ターゲット顧客を明確にし、新しいサービスや価値のアイデアを生み出します。そして、それに基づいてカスタマーサポートやカスタマーサクセスがどう動いていくかを検討し、新しいアイデアを反映させて方針をまとめ上げたいと考えています。

データ・アナリティクス入門

小さな仮説が大きな発見に

なぜデータを分ける? まずは、分析はデータを分けて整理するところから始まると感じました。各要素や性質の細部まで明確に把握してから整理することが、効果的な分析につながると実感しています。また、比較対象や基準を設け、データを比べることで意思決定を支援する効果にも大きな意義があると印象に残りました。 どこを重点分析? 動画学習では、帰還した戦闘機の被ダメージ部分とそうでない部分、さらにその他の箇所について、どの部分の分析が有用なのかという問いかけがありました。帰還しなかった戦闘機では、被ダメージの少ない部分に致命的な損傷がある可能性を想定し、その箇所を中心に分析すべきだという仮説思考を学び、これまでになかった視点を得ることができました。 データで判断する? また、データの収集や分析の目的は、それを基にした適切な意思決定にあると感じます。意思決定を円滑に進められるよう、データ分析のスキルを磨いていく必要性を強く意識するようになりました。 売上の謎は何? 売上分析においては、課題の真因を明確にするために、売上に直結する各種データをどのように収集するかが重要です。過去の実績や予算、さらに他社の数値との比較によりギャップを把握し、原因を推察して仮説を立てるプロセスは、正確な分析に寄与するというイメージが湧きました。 本質はどう捉える? 最後に、データ収集の際は、必要な要素の抽出を慎重に行うことが求められます。MECEの思考法を活用し、要素の抜け漏れを防ぐとともに、各項目に適した分析手法を検討することが大切です。データそのものの生成に注力するのではなく、本質が何かを見極め、意思決定を促す資料として仕上げることが、最も重要であると感じました。

クリティカルシンキング入門

数字の分析で問題解決!MECEで明快に理解

数字分解で見える問題解決策 目で見た情報をそのまま鵜呑みにするのではなく、内訳の計算やグラフ化などの加工をすることで、その数値を見て問題解決のための分析を行うことが重要です。数字を分解することで、問題の要因や発生箇所を特定できます。この際、「MECE」を意識して分解を行うことで、効果的な分析が可能となります。どこからどこまでが「全体」なのかをしっかり定義し、目的に応じた分け方をすることがこの分析の鍵です。 複数の視点で数字を分析する 数字を分析する際には、一つの切り口だけでなく複数の切り口から見て比べることが大切です。そうすることで、一見正しそうな仮説の間違いに気づいたり、本質的な情報の傾向を掴むことができます。数字を分ける際は、機械的に分けるのではなく、「問題は個々にあるのではないか」と仮説を立て、それを確かめるような切り方を試みることが有効です。 採用戦略の数値で見える傾向 採用戦略を立案する際には、クライアント企業の採用プロセス(求職者への求人リーチ~応募喚起、書類選考通過率、面接合格率、内定後の意思決定率など)ごとに数値を分析します。これにより、どこでスタックしているのかを明確にし、それに応じた打ち手を考案し、実行できます。そして、それが自分で解決できる問題なのか、クライアントに動いてもらうべき問題なのかを切り分け、自身の行動を決定していきます。 戦略改良のための比較分析とは? クライアント企業の求人閲覧者を全体として捉え、どれくらいが応募し、そのうちどれくらいの人数が書類選考を通過したかを明確にしてクライアントに提示します。他社や市況感全体と比較することで、どのような傾向にあるのかを伝え、戦略を練っていくことが重要です。

マーケティング入門

訪日観光アプリ成功の鍵を探る

観光案内アプリのセグメンテーションとは? 観光案内アプリの事業化を検討する過程で、特に注意が必要だと感じたのは「セグメンテーションの切り口」です。訪日外国人旅行客を優先すべき顧客層として仮定しましたが、最終的には国内旅行者にも対象を広げたいと考えています。このとき、以下の変数を明らかにし、「購買行動に差が出る切り口を選ぶ」ことが重要だと学びました。 - 人口動態変数(例:年齢や性別) - 地理的変数 - 心理的変数(例:趣味、志向) - 行動変数(例:使用頻度) 6R基準でのターゲティングの重要性 ターゲティングについては、6Rという評価基準を新たに知りました。特に、Rankでは市場規模に加え、イノベーターやアーリーアダプターといった火が付きやすい層を選ぶ必要があると再認識しました。 - Realistic Scale - Rate of Growth - Rival - Rank(優先順位、影響力の強さを考慮) - Reach - Response これらの基準は、市場の魅力と自分たちが勝ち残れるかどうかを比較しつつ選びます。 データを基にしたセグメンテーションプロセス セグメンテーションはデータに基づいて行います。まず、「購買行動に差が出る切り口」を仮説立てし、それに応じてデータを取得します。その後、ターゲティングやポジショニングを以下の手順で進める計画です。 1. セグメント別の市場規模、成長率を推定する 2. 推定結果に優先順位をつける 3. 最も優先する市場について競合との差別化を仮決めする(ポジショニング) 4. 実際に検証する この一連のプロセスによって、より的確で効果的なアプローチが可能になると考えています。

データ・アナリティクス入門

未来を切り拓く!仮説思考の力

仮説はどう整理する? 複数の仮説を立てる際には、その網羅性と分類が重要です。過去の失敗を分析する場合や、将来の事業の成功を予測する場合には、3Cや4P分析を活用して仮説を立ててみると良いでしょう。 データ収集はどうする? 仮説を裏付けるためのデータは常に存在するわけではありません。必要な情報を収集する場合、誰に何をどのように聞くべきかを慎重に考える必要があります。都合の良い情報だけを集め、他の可能性を排除しないようにする意識も大切です。この姿勢は「関心や問題意識のないところに仮説は生まれない」というマインドセットにも通じています。 市場特性の見極めは? 3Cや4Pの視点で現在のビジネス状況を正しく理解することが不可欠です。しかし、市場や業界、製品が特殊な場合には注意が必要です。例えば、医療業界ではエンドユーザーが患者であり、購入決定権を持つのは医療者であるケースがあります。広告制限のある製品については、適切な顧客設定と検証が必要です。自社だけでなく、関わるグループ施設市場を含めた3C、4P分析も有効です。 3W1Hで速さは向上? 仮説の3W1Hを繰り返すことでビジネススピードが向上します。過去と未来の仮説を分けて分析し、サイクルを回すことが必要です。たとえば、大型コンペの参加が有効だったか、その前後の効果や成功の分析、次回の見込みや採用率の変化が周囲に与える影響の予測を行います。 Excel作業改善のコツは? データの比較基準が異なる場合、データの取得、加工、単位や見え方の統一が課題になります。実際の分析開始前の準備段階でのExcel作業に多くの時間を費やすことが課題となっているため、この点のスキルアップが必要です。

データ・アナリティクス入門

データ分析の魅力に気付く学びの旅

データ分析の目的と仮説設定 データ分析においては、「目的」や「仮説」の設定が極めて重要です。解決したい問題を明確にし、まず結論のイメージを持つことが大切です。問題解決のステップをたどる際には、何が問題で、どこで問題が発生しているのか、なぜ問題が発生しているのか、そしてどのように解決策を実行するのかを考えます。そのため、データ分析は比較対象を明確にし、もし検証データがなければ用意する必要があります。 データ収集と加工の要点は? データを収集する際には、検証に不要な情報を極力除くことが重要です。集めたデータを元に、明らかにしたいことを基にデータを加工します。この際、実数と率の両方を確認することが必要です。また、やみくもに分析するのではなく、ストーリー性を持たせ、傾向を把握し、特に注目すべき箇所を明確にすることが求められます。 仮説検証で注意すべきポイント 仮説検証においては、可能性のある原因を網羅的に仮説として挙げ、そのうち原因である可能性が高い仮説を検証します。解決したい問題を明確にし、結論のイメージを持つことが再度重要になります。検証するためのデータがない場合は、担当部署に協力を求め、データを用意することが求められます。用意したデータは実数と率のグラフで表現し、新たな発見を見つけることを目指します。ただし、やみくもな分析は避けるようにしましょう。 視覚的表現の重要性とは 常に実数と率のグラフを頭の中で描くように心がけ、色々なグラフでデータを視覚的に表現することで、新たな気付きがあるかもしれません。このようにデータ分析においては、明確な目的と仮説、適切なデータの収集と加工、そしてストーリー性を重視することが重要です。

データ・アナリティクス入門

比較で深めるデータ分析の極意

比較で何が見える? WEEK1で学んだことにより、分析の基本は比較であるという理解が深まりました。例えば、A/Bテストでは、可能な限り条件を揃えた上で変更点を明示し、仮説を試すことによって、収集データの精度が向上します。これにより、データを活用した問題解決の要因分析と解決策の選択に深みが出てくると考えられます。 問題解決の流れは? 問題解決のステップには以下の要素があります。まず、問題箇所を明確化し(what)、次にその箇所を特定します(where)。続いて、原因を分析し(why)、最後に解決策を立案する(how)という流れです。特に重要なのは、whyでプロセスを細分化し、howでは複数の選択肢を洗い出して根拠に基づき絞り込むことです。 A/Bテストはどう? 手段としてのA/Bテストは、A案とB案を比較するためのテストで、できるだけ条件を揃えて比較対象を明確にすることが肝心です。このテストを用いて、データ分析の精度を高め、より良い問題解決に繋げることが可能です。 提案の工夫は? 私の業務ではWebマーケティングのような高速な仮説検証はできないものの、提案を行う際には、条件を可能な限り統一したプランAやプランBを提示し、違いを明瞭にするよう努めています。これにより、提案内容をブラッシュアップし、上長の意思決定のポイントを把握することができます。 予算説明の極意は? また、近々、来年度の予算計画について上長に説明する機会があります。その際は、過去のデータの傾向を踏まえて、変動の大きい部分を中心に複数のプランを提示します。プラン間の違いを明確にし、上長の意思決定を理解することで、計画の精度を高めていきたいと考えています。

「比較 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right