データ・アナリティクス入門

実践×代表値:新たな視野をひらく

代表値の種類は何? 分析や比較を容易にするためのデータ加工の方法について学びました。まず、代表値として単純平均、加重平均、幾何平均、中央値の4種類があること、また散らばりを表す指標として標準偏差(分布も含む)があることを理解しました。これまでの業務では単純平均と中央値を主に使用していたため、各数字に重みを付ける加重平均や、全データを掛け合わせる幾何平均を知ったことで、数値の見せ方に新たな視点を持つことができ、とても興味深く感じました。さらに、ローデータからグラフ化する際に、各代表値ごとの違いを意識することで、より適切なグラフやビジュアル表現が可能になると感じました。 業務評価の新手法は? 直近の業務では社内アンケートを実施する予定があり、満足度などの評価数値に対して、従来の単純平均や中央値に加え、主要ターゲット層の受講率を掛け合わせた加重平均も算出してみたいと考えています。これにより、より実態に即した評価ができると期待しています。 エクセル関数はどう組む? 一方で、各代表値の意味は理解したものの、エクセル上で関数をどのように組むかについてはまだ確認が十分ではありません。特に、幾何平均で平方根が出てくる点については苦手意識がありますので、ミスなく計算できるように仕組み化できないか振り返りたいと思います。また、2SDルールについては基本的な理解はあるものの、具体的にどのように活用すべきかというイメージが定まっていないため、いくつか事例を確認して今後の活用方法を模索していく予定です。

データ・アナリティクス入門

数字が語る学びの物語

データ全体像は? データ比較や数値化、数字に集約して捉える方法、さらには視覚的および数式を通じて関連性を把握する手法について学び、大変参考になりました。これにより、データの全体像を把握しやすくなると感じています。 平均の違いは? 目的に応じて、単純平均だけでなく、加重平均、幾何平均、そしてはずれ値に対応する中央値など、さまざまな平均値の使い分けが有用であると再認識しました。数字を分析する際、データの中心値と散らばりを考えるアプローチは非常に重要です。 標準偏差はどう? 特に、これまであまり意識してこなかったデータのばらつき、すなわち標準偏差の理解については、自己学習が必要だと思いました。今回の学習を通して、データ分析においてばらつきの考慮が結果に与える影響の大きさに気付きました。 実践はどう進む? 今後は、学んだ知識を生かし、エクセルを活用してグラフ化するなど、実践的なアプローチに取り組んでいきます。また、どのデータを分析するかはまだ模索中ですが、さまざまな場面で応用できるよう、引き続き自己研鑽を積んでいく予定です。 難解概念の壁は? 一方で、「平方根」、「標準偏差」、および「正規分布と2SD」といった概念は難解に感じたため、これらの理解を深めるためにさらなる学習が必要だと感じました。また、過去に業務で使った経験がある「幾何平均」についても、当時はあまり考えずに対応していたため、Raw dataを見直しながら基礎から再確認していきたいと考えています。

データ・アナリティクス入門

問題解決の視点で成長する方法

何が最優先? 問題解決の考え方では、まず最も重要な問題を特定することが大切です。「何が問題か?」という視点から始め、数値を比較して問題の所在にあたりをつけます。また、理想の計画と現状の未達成状況を把握し、そのギャップを埋める方法を検討します。数値の比較では、見る必要のない範囲を見極めて効率的に分析を進めることも重要です。 現状はどう捉える? 現状把握の際には、問題をさらに深掘りするための切り口を考え、その仮説や優先順位をつけていきます。この過程では定性的な情報も取り入れることが重要です。特に、数値に頼りがちな初期の分析では、仮説の形成において定性的な情報を活用することが印象的でした。 分解して見える? ロジックツリーの層別や変数の分解を用いて課題に取り組むと、目標達成のための具体的な施策が見えてきます。たとえば、採用施設数や売上の向上、コストカットといった課題に対処する際は、変数分解の考え方が役立ちます。また、メーカー推奨品の効果を確認する際には、計画と実績を数値で評価し、感覚的な良し悪しに頼らず客観的に判断することが求められます。 分析の工夫は? 分析を進める際には、「見なくてもよい範囲・数字・切り口」を適切に除外することで、効果的な分析が可能になります。データの切り口についても、何が効果的か考え、必要であれば追加のデータ取得を検討します。また、チームメンバーとアイデアを共有し、他に異なる切り口の可能性がないかを確認することも重要なプロセスです。

データ・アナリティクス入門

振り返りで切り拓く未来

集客前提を疑ってみる? スクールの課題に対する対応優先順位を誤ってしまいましたが、そこには「また間違った集客を繰り返しそう」という隠れた前提がありました。まずは、この前提を改めることが必要であり、その上で真に解決すべき課題を特定する必要性を感じました。また、生徒データの切り口に関するブレストの中で、「ああそうだ、その観点も必要だ!」との意見があったことから、広い視野を持って落ち着いて検討する重要性を再認識しました。 数字の分析意図は? 分析したい項目がそもそも十分に取得できていない場合もあるため、あらかじめあきらめる部分もある一方で、見るべき数字の優先順位はしっかり決めて取り組む意向です。具体的には、イベントアンケート結果や申込者のデータについて、単に分析するのではなく「何が知りたいのか?その目的は何か?」と自分に問いながら進めるようにしています。 アンケート分析の意義は? 各イベント終了後には、アンケート結果と申込者属性の分析を行い、その内容を報告する必要があります。その際、以下の点を意識して業務にあたっています。まず①どの数値項目を優先的に見るのか、次に②その数値が他のイベントと比較して問題ないか、さらに③比較する際には条件を揃えているか、そして④関係者に報告する際には自分の仮説をセットで伝え、議論を促すかという点です。 特に②以降の実施が十分ではないと感じているため、限られた時間の中で箇条書きなどで条件を明確にし、意識しながら取り組むことを心がけています。

データ・アナリティクス入門

大学生活のデータ分析で見えた成長のカタチ

仮説立てに必要な視点とは? 仮説を立てる際には、先入観に囚われず、考えられるあらゆる要素を踏まえることが重要だと感じました。これまでの経験も無論大事ですが、現状のデータを新鮮な目で眺めることが重要だと思います。 仮説が抱える落とし穴は? また、仮説とは自分で仮の答えを設定すること、という点についても非常に腑に落ちました。それというのも、仮説を立てたとしても、それが必ずしも現状の問題解決になっていないことがあるからです。 大学で得る成長とは? 大学での学びについては、一般的には学生の成長にさほど寄与しないと指摘されることがあります。しかし、それが本当なのか、またそうだとしたら何が原因なのかを検証したいと考えています。 データ分析で何を探る? 最初の仮説として、「大学での4年間は、何らかの形で学生の成長に貢献しているはず」という仮説を立て、大学内のあらゆるデータを分析していきます。 学生の成績変化をどう評価する? 具体的には、入試の時の成績とGPAを比較し、著しく成績が伸びた学生をピックアップします。彼らにアンケートを実施し、4年間のパフォーマンスを学業、学業外活動、就職結果などの要素に分けて点数を付けてもらいます。 インタビューで何を聞く? 最後に、各数値の典型的な学生をピックアップし、個別インタビューを行う予定です。

データ・アナリティクス入門

平均だけじゃ見えないデータ

平均値だけで大丈夫? 今週の学習を通して、データを扱う際に平均値だけを確認するのは不十分であると改めて実感しました。平均値はデータの中心傾向を示すものの、ばらつき(分散や標準偏差)を反映していないため、データの特性を正しく理解するには中央値や最頻値など他の代表値も併せて確認する必要があると感じました。 グラフの選び方は? また、データを直感的に把握するためには、単なる数値の羅列ではなく可視化が重要です。グラフの種類を適切に選ぶことで、データの傾向やパターンがより分かりやすくなります。時系列データには折れ線グラフ、カテゴリごとの比較には棒グラフ、割合を示す場合には円グラフなど、目的に応じた使い分けが求められると再認識しました。 代表値はどう使う? 普段、さまざまな部署とデータ分析を行っている中で、平均値だけではなく他の代表値を用いることや、適切なグラフを選択することが業務に直結する重要な要素となっています。これまで平均値のみで示していたデータに対して、中央値や最頻値を加えることで、より正確な解釈につながると感じています。 今後どう進める? 今後は、データを扱う際に平均値に偏らず、中央値や最頻値、分散などの情報も徹底的に確認します。また、他者が作成したデータや可視化についても、目的に適しているかどうかをチェックし、必要であれば適切な改善点を提案することで、誤った解釈を未然に防ぎ、正確な意思決定につなげていきたいと考えています。

アカウンティング入門

見直す力が未来を拓く

提供価値はどう評価? ビジネスの提供価値を評価する際は、まずその価値自体を見直し、次に利益やコストなどの数字を確認します。単に数値が高いか低いかだけで判断するのではなく、目指す価値に対してそれらの数字が妥当かどうか、どのような理由や根拠でその評価に至ったのかを、類似するビジネスと比較しながら検証することが大切です。また、目の前の結果だけでなく、将来的な展望も考慮し、日々の業務や行動の中でその視点を意識する必要があります。 ビジネス見直しの視点は? 自分のビジネスや他部門、他社のビジネスを見直す際には、提供価値が何であるか、その価値が他に比べて優れているのか、またお客様に喜んでもらえるのかを常に考える癖をつけることが求められます。グループ内でディスカッションする際には、その価値がどのような点で優れているか、または改善すべき点がどこにあるのかを話し合います。 新商品検証はどう進む? 新しい商品開発においては、初期段階だけでなく各段階でその提供価値を振り返り、再検証することが重要です。コスト資料を確認する際も、他の資料と比較しながら、なぜ費用が高いのか低いのか自分なりの考えを持ち、それをメンバーに説明して納得を得る力を養います。報告や説明を行うときは、できるだけ数値を用いて具体的かつわかりやすい表現を心がけるとともに、商品コンセプトや提供価値に立ち戻って考える姿勢を保ち続けるようにしています。

マーケティング入門

伝え方に革命!差別化の極意

働き方と差別化は? 競合に気を取られがちになりやすい中で、差別化の大切さについて実感しました。それと同時に、自身の仕事のやり方を振り返る機会にもなり、誰に向けてどのように働くべきかを再考する気づきを得ました。また、イノベーションの普及要件についての学びも深く感じました。 顧客にどう響く? 「消費者が商品に抱く期待や購買意欲を高めるアプローチ」が鍵という堅い表現もありますが、「どのように伝え、どう魅せるか」と「顧客目線での考察」を組み合わせることが、より具体的な解決策となるという考えに納得しました。 どう伝えれば納得? 現在、バックオフィス業務に従事しており、最近は会計業務も担当するようになりました。これまでの単なる数値管理や報告に留まらず、「いかに分かりやすく、相手に納得してもらえる形で情報を届けるか」を、順序やストーリーを意識して実践するように心がけています。 どう改善すべき? 既存の業務に向き合いながら、業務改善提案の伝え方については以下の点を意識しています。 まず【比較優位】として、現行業務との違いを一覧表にまとめ、わかりやすく整理すること。次に【適合性】を考え、現場が無理なく導入できるステップを明確化し、フォーマット化しています。そして【試用可能性】として、一定期間の試験導入を行い、その結果をフィードバックするトライアル運用も取り入れるようにしています。

クリティカルシンキング入門

未来のリーダーを目指して学びましょう

キャッチーな見出しで意図を明確に 数値等を用いた資料を作成する際には、伝えたい意図を明確化するキャッチーな見出しを使うことが大切です。また、適切なフォントを利用し、ケースバイケースで適宜グラフを活用することも重要です。相手に読んでもらえる文章作りを意識しながら、分かりやすさを追求しましょう。 投資付議の資料はどう作成すべき? 投資付議の資料作成においては、比較表の選択がポイントです。丁寧に時間をかけて資料を作成することで、より納得感のある提案ができるでしょう。また、報告時間が決まっている定例会や分科会での資料作成時には、数分で相手の頭に残るスライドを作成することを意識する必要があります。 フォント選びの工夫は? フォント選びについては、会社の方針に従い、派手なフォントは避けるべきです。しかし、資料が単調にならないように、太字やフォントの大きさを調整して工夫しましょう。 見出しとグラフ、どう活用する? 見出し作成においては、伝えたい意図を最初に決めておき、その後で見出しを作成すると良い資料ができると感じました。グラフの活用については、エクセルでの様々なグラフを試しながら習熟度を高めていくことが有効です。 ChatGPTをどう利用する? 相手に読んでもらえるような文章を作るためには、情報量が多くなる場合にChatGPTなどを利用して添削・整理すると良い方法だと感じました。

戦略思考入門

リソース配分で成果を最大化する秘訣

どうリソースを集中? 捨てることでリソースを集中させることができ、結果として顧客満足度の向上につながるという学びがありました。目先の利益にとらわれがちで、捨てることによる機会損失ばかりを考えていました。しかし、選択と集中を行って、自分のリソースをより効果的に投じ、自身の強みを伸ばすことが重要だと再認識しました。 どの基準で判断? 何を捨てるのか、その判断基準としては投資対効果など具体的な数値を重視するべきだと感じました。工数がかかっているからという曖昧な基準ではなく、投じた時間に対する利益を数値で比較することから始める必要があります。 対応姿勢を見直す? 創業間もない会社では、何でも全力で対応する姿勢が求められてきました。しかし、その中にはルーティーン化しているものや、自分でやるべきだという不要な思い込みに囚われているものもあります。特に単純作業は外部に依頼して、少しでも自分の時間を作るよう工夫する予定です。また、利益幅の小さい仕事についても、自分でやるべきか見直していきます。 作業分担は適切? さらに、1週間の業務内容をカレンダーに記録し、対応頻度が高いものや低いもの、対応時間が長いものや短いものを四象限に分けます。その中で外注可能な単純作業を選び、クラウドソーシングで見積もりを取る予定です。また、取引を継続するかどうか判断するために、稼働時間に対する利益額も算出します。

データ・アナリティクス入門

データに飛びつかず、考える力

比較の基本って何? 分析とは比較であるという基本原則を再確認しました。講座では、次の3つの軸に沿って考える重要性が強調されました。まず、プロセスとして仮説思考を実践し、次に5つの視点から多角的に状況を捉えること。そして、アプローチとしてグラフを活用する際には、「どの仮説を立てるか」「何と比較するか」「どのグラフが適切か」という点を検討する必要があると学びました。 立ち止まって考える? この学びを自分の業務に活かすため、まずはデータに飛びつく前に一度立ち止まり、ペン(あるいはキーボードに頼らない)を置いて、分析の目的と複数の仮説を明確にすることの大切さを実感しました。営業活動では、数字が絶えずやってきます。得意先や自社の各部門から提示される数値に対し、ただグラフを作成するのではなく、「データ分析を通じてどんな成果を得たいのか」しっかりとした作戦を練ることが、主導権を握るために必要だと感じました。 見える化の効果は? さらに、「顧客フォーキャスト」と「自社生産計画」を見える化し、グラフ化および定期的な更新を仕組み化する提案も印象的でした。この仕組みにより、営業部門と製造部門が共にデータを活用し、サプライチェーンマネジメントの強化が期待できると考えています。 今後の戦略はどう? 今回の講座で得た知識を、今後の業務に活かし、より効果的な分析と戦略立案に取り組んでいきたいと思います。

データ・アナリティクス入門

平均値だけじゃない!全体を読む力

全体像はどう理解? データ分析において、従来は個々の指標の数値に注目していましたが、全体像を俯瞰する視点の重要性に気付かされました。ミクロな比較だけでなく、マクロな観点からデータ全体の分布に目を向けることで、より精度の高い理解が得られると感じています。 分布の意義はどう? 単に平均値だけに頼るのではなく、各指標のばらつきや分布の状況を把握することが、好調な要因や低調な要因を見極める上で大いに役立ちます。利用者の属性ごとにどのような傾向があるのかを明確に掴むためには、データ全体を広い視野で捉える必要があると実感しました。 層ごとの違いは何? たとえば、ある教育機関の利用者分析では、一部の層でばらつきが大きく見られる一方、他の層では比較的安定した数値が示されていました。こうした違いは、全体のデータを俯瞰することで初めて正しく理解できると考えます。 ツール選びはどうする? 私自身は、常に分布と俯瞰的な視点を忘れないよう、日々の学習の中で意識しています。平均値だけでなく、各種指標の分布を把握するためのツール構築にも取り組み、より具体的かつ実践的な分析に努めています。 仲間とどう共有する? また、周囲の仲間にも、平均値一辺倒にならず、データ全体の傾向を把握する大切さを伝えるよう心がけています。この学びを通じ、より深い洞察と分析力の向上を目指していきたいと考えています。

「比較 × 数値」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right