データ・アナリティクス入門

数字のばらつきが描く成功のヒント

標準偏差の重要性は? 実績分析ではこれまで、平均値を求めることで状況を把握していましたが、標準偏差を算出してデータのばらつきを確認することはできていませんでした。課題解決に必要な問題の特定には、データのばらつきを捉えることが重要であると気づいたため、今後はまずデータ全体のばらつきを算出し、大まかな傾向を把握してから詳細な分析に取り掛かるようにしたいと思います。 エリア別売上の差は? また、営業実績の把握においては、従来は主に各時点の数値の差を比較する方法を採用してきました。今後は、売上が特定のエリアに偏っているかどうか、そしてその要因が何であるかをデータからしっかりと導き出すために、ばらつきにも注目しながら分析を進めていく考えです。

戦略思考入門

数字で見極める捨て方改革

なぜ捨てるのが難しい? これまで、自分は捨てることを非常に難しく考えていたという実感を改めて持ちました。過去からの関係性を重視するあまり、本当に必要なものとそうでないものを見極めることが難しかったのだと思います。 どうやって選び取る? しかし、今回、明確な判断基準として数値やデータを用い、何を優先し何を捨てるのかを選択することが可能であると気付きました。売上拡大や利益率向上を目指して多くの改善テーマに取り組む中で、従来から掲げてきた改善テーマについても、意味を再検証する必要性を感じています。具体的には、以前から実施していた特定のコスト削減策について、他の施策と数値やデータで比較し、優先順位の低いテーマは見直す判断に至りました。

クリティカルシンキング入門

数字が紡ぐ学びのストーリー

グラフで何が分かる? 数字データをグラフで視覚化することで、数字が一目で把握できるようになりました。また、比率や年代ごとの切り口でデータを変換することで、新たな視点や発見が得られることを実感しました。さらに、データを分解し、MECEの視点でスライスすることで、そこからストーリーが見えるようになる点も学びました。 業務でどう応用する? 日常業務においては、企業の財務諸表などの比較分析で、単に数値を並べるのではなく、グラフや比率、分解といった方法を取り入れることが大切だと感じています。これにより、販売管理費用の内訳や労働分配率の推移、さらには他社との比較など、多角的な切り口でアウトプットする訓練ができ、分析の深みが増しています。

データ・アナリティクス入門

仮説と比較で切り拓く未来

分析プロセスの進み方は? 今回の学習では、データ分析の思考プロセスを体系的に学び、特に三つの重要なポイントを意識することができました。まず、仮説を持つことでプロセスが早く進むという点、次に、分析は比較により成り立つという点、そして数値とグラフの取り扱いが肝要であるという点です。 課題解決の秘訣は? また、自己の課題として、筋の良い仮説立案力を磨く必要性を強く感じました。そのため、幅広い関心を持ち、数多くの因果関係に触れることが重要だと捉えています。データ分析は、実際に因果関係を紐解く作業であり、社会に潜むさまざまな関係に目を向けることで、自然と論理的かつ効果的な仮説立案感覚が養われると実感しました。

データ・アナリティクス入門

分析で気づく新たな視点: データ比較の重要性

データ分析での思考法とは? 「分析は比較なり」という言葉が印象的でした。これまで、データ分析といえばすぐに数値を操作してパーセンテージを計算し、グラフを作成することだと思い込んでいました。ですが、何より思考の部分が重要であることを教えてもらい、とても参考になりました。 オープンデータの課題はどう洗い出す? 現在、私は行政のオープンデータから課題を洗い出す仕事に取り組んでいます。規模が大きいデータを前にして、どこから手を付ければよいのか途方に暮れることもありました。しかし「まずは比較」のアプローチを念頭に置き、データを俯瞰して眺めることを実践してみようと思います。

データ・アナリティクス入門

平均だけじゃ見えない数値の物語

平均と標準偏差は何が違う? 普段の業務で平均値はよく目にするものの、標準偏差にはあまり注目していませんでした。しかし、データの比較が分析の基本であると意識する中で、単に単純平均だけで比較するのではなく、その比較自体に意味があるかどうかを検討し、適切な指標を選ぶべきだと考えるようになりました。 背景にある要因を探る? また、私の業界では他エリアでの優れた事例を自地域に取り入れることが一般的です。その際、来客数や平均単価といった数値に注目する場面が多いですが、単なる数値の比較に留まらず、背景にある要因について仮説を立て、深く考察する姿勢が重要だと感じています。

データ・アナリティクス入門

平均じゃ見えない真の学び

数値の変化、どう捉える? 普段、教材の活用数値を過年度で比較する機会が多いのですが、昨年と数値に大きな変化が見られなかった場合は、深掘りした分析に至らないことが多かったです。しかし、各属性ごとの活用状況について、単なる平均値だけでなく分布の度合いにも注目することで、より詳細な比較が可能になると感じました。 平均値の選び方は? また、単純平均に頼らず、状況や条件に応じた5つのパターンを使い分けることで、正確な平均値を求める手法が有効だと思います。ただ、具体的にどのパターンを用いるか、その判断基準については、今後の検討課題として捉えていこうと考えています。

「比較 × 数値」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right