データ・アナリティクス入門

グラフが語る数字の物語

グラフ化の効果は? データ分析では、まずグラフ化して数値を視覚的に確認することで、比較がしやすくなる点が基本だと学びました。これにより、数字の背後にある特徴や傾向が一目で把握できるようになります。 代表値の選び方は? 講義では、データの代表値として「単純平均」「加重平均」「幾何平均」「中央値」があること、そしてデータのばらつきを示す「標準偏差」の重要性を改めて認識しました。どの平均値を用いるかは、分析の目的に応じて選ぶ必要がある点も印象的でした。 必要な基礎理解は? 普段の業務では、無意識のうちにデータ収集やグラフ化を行っていたため、なぜそれが必要なのかを体系的に学ぶことができたのは大変有意義でした。講義を通して、さまざまな角度からデータを評価できる手法を身につけることができました。 多角的評価の理由は? また、クライアントや社内のデータを用いたマーケティングやプロモーションの計画では、ピクトグラムや棒グラフで全体感を把握した上で、単純平均だけでなく「加重平均」「幾何平均」「中央値」「標準偏差」などを組み合わせ、多面的な視点からの分析が重要であると実感しました。

データ・アナリティクス入門

データ分析で広がる新たな視点と可能性

データの深意を探るには? 各データを深く掘り下げ、その背後に何が見えるかを考えることが重要だと感じました。数値からクリック率やコンバージョン率を計算することで、新たな視点から現状を考察できると思います。また、問題に関連する要素とそうでない要素を分けて考える対概念や、適切な判断基準を設けて各案を評価する過程の重要性を学びました。常に思考の幅を広げることを意識することが大切だと感じます。さらに、A/Bテストを行うことで結果を比較でき、適切に検討を進められることも分かりました。 学んだ知識はどう活かす? 自分の業務にすぐに活用できるかはまだわかりませんが、今週学んだデータの応用や対概念の考え方は役立ちそうです。3W1Hのステップを繰り返しながら、丁寧に分析していくことが大切だと改めて感じました。 採用手法は最適か? 実行可能な業務として、採用活動にもこの手法を取り入れられるのではないでしょうか。採用ページのクリック数と応募者数のデータを取得し、ファネル分析や離脱ポイントを特定した上で、A/Bテストを実施すれば、最適なコンテンツや応募フォームを判断できると思います。

データ・アナリティクス入門

比較で解き明かす分析の魅力

分析の苦手意識はどう変わった? 分析は比較なり、という言葉をきっかけに、これまで抱いていた「分析」という言葉への苦手意識が和らぎました。分析を「要素に分解し、比較する」とシンプルに捉え直すことで、データ分析の目的や方法を改めて見直す機会となりました。また、比較する際には、常に同じ条件である「Apple to Apple」を心がけることが重要であると理解できました。 継続率向上の秘訣は? 分析の目的を明確に定めた上でデータを取り扱い、最終的には意思決定に結びつけることが目標です。特に、サービスの継続率向上に向け、何があればサービスが続けやすいか、または辞めてしまうかという点から、顧客ニーズをより深く分析していきたいと考えています。 資料の真意は何? これまで、分析担当者が作成した資料をそのまま受け取るだけでしたが、今後は「何の目的で、どの要素を比較しているのか」を意識して資料を読み解くよう努めます。さらに、顧客のサービス継続率や利用・活用率といった数値を日々確認し、昨年比の大まかな変動だけでなく、そこから導き出せる具体的な示唆についても考察を深めていくつもりです。

データ・アナリティクス入門

分解して実験!柔軟思考の学び

原因はどう分析する? 原因を把握するためには、まず複数のプロセスに分解して考え、どこに問題が潜んでいるか確認することが重要です。良さそうな仮説が浮かんだら、すぐに試して実際の反応を収集し、実験や検証を通じてブラッシュアップしていくプロセスが効果的です。正しい原因を探しすぎず、迅速な行動が大切だと思います。 どこで顧客が離脱? ファネル分析は、顧客の行動を理解するのに役立つ手法です。各プロセスを細かく分解し、数値や割合を比較することで、どの段階で大きな離脱が発生しているかが明確になります。例えば、ECサイトにおいては、検索段階なのか、カート投入後なのか、決済時なのかといった具体的な離脱ポイントが把握できる点が特に有用です。 分析方法のポイントは? また、What、Where、Why、Howというステップを踏むことで、データ分析の精度が向上し、迅速な問題解決につながると実感しています。仮説を複数立てたりプロセスを細かく分解することは大切ですが、それに固執しすぎると原因分析や具体的な改善策の検討に進めなくなるため、柔軟な思考を保つことが重要だと感じました。

データ・アナリティクス入門

平均値だけじゃ見えない真実

データはどう活かす? データは単に眺めるだけでは意味がありません。他のデータと比較することで初めてその意味が明らかになります。また、数値化やデータの加工を行うことで、より多くの情報が見えてきます。代表的な統計量を見ることで全体の傾向を把握できるものの、平均値だけではデータのばらつきを捉えきれないため、標準偏差の確認やグラフ化によって視覚的に捉えることが重要です。 グラフ作成はどう選ぶ? 多くの数値データを扱う際には、経時変化を示すグラフを活用することも大切だと感じます。ただし、複数の要素が存在する場合、どの部分をグラフ化するかの選択は慎重に行う必要があります。あらかじめ目的に沿った問題箇所を整理し、具体的にどの要素が有効かを明確にした上でグラフ化する習慣を身につけたいと思います。 数値の裏側を探る? 業務でデータを加工したり、調査を行う場合、平均値が頻繁に目に入りますが、その数字の背後にあるばらつきを意識することが欠かせません。単純な数字に惑わされず、加重平均や幾何平均といった他の代表値も適切な場面で選択できるように、知識を深めていきたいと考えています。

クリティカルシンキング入門

データを巧みに操る分析の旅

数字の裏に隠れた答えは? 数字の羅列にしか見えないデータでも、多角的に分解し整理することで新たな情報が得られることに気づきました。具体的には、WhenやWho、Howといったカテゴリごとにデータを洗い出し、グラフを用いて数字の変動を追ったり、最大・最小の数値や割合を比較することで、多くの学びがありました。私は特にグラフ化や関数に対して苦手意識を持っていたため、これらを克服してデータ分析の手法を身につけたいと強く感じました。 具体例で何が見える? これらの手法は、主に以下のような場面で役立つと考えています。例えば、産休・育休のデータでは、自部署だけでなく全社や日本社会全体の傾向も分析でき、マネージャー育成では、試験結果を単なる合格・不合格の線引きではなく、点数ごとの分布に注目して分析が可能です。 どう伝えれば安心する? また、上司に資料を提出する際には、以下の行動を心がけていきたいと思います。まずアウトプットのイメージを具体化し、それに必要な情報を集めます。そして、仮説を立ててそれを検証できる視点で分析し、提案先の社員目線にあったアウトプットを整えます。

アカウンティング入門

業種で読み解くB/Sの秘密

B/Sの表現はどう違う? B/S上で、業種ごとに異なる事業モデルがどのように表現されるかが非常に興味深かったです。たとえば、資産面から固定費が大きくなる事業とそうでない事業があり、経営コンセプトによって必要な資産の状態が変わるため、それに合わせた負債の設定も変わることが理解できました。 B/Sの特徴はどう見る? また、B/Sに関しては以下の点に注目して学びを深めたいと考えました。まず、業種ごとにB/Sの特徴がどのように異なるのか、大きな傾向を感じ取ること。次に、同一業種内でも企業ごとの資産、負債、純資産の構成の違いに焦点を当てること。そして、35年ほどの長期にわたるB/Sの変化の流れを把握することです。短期間、たとえば3年程度では変化が見えにくいという仮説も立てています。 財務数値はどう分析? これらは、財務関係の書籍で顕著な事例が紹介されているため、その内容を確認することで業種ごと、企業ごとの違いを概略的に理解していきたいと考えています。ある程度理解を深めたうえで、実際の財務数値を整理し比較することで、より確実な分析に繋げていきたいです。

データ・アナリティクス入門

データ分析の新常識!実践で学んだ秘訣

データ分析の比較とは? Week1で「分析とは比較である」と学びましたが、Week6の実践演習でその意味を実感しました。 アンケートの対象者を選定する際、データ収集後の分析においてどのような比較を行うかを念頭に置くべきだということを改めて感じました。また、分析を行う前段階で、最終的なアウトプット(例:切り口やグラフ等のビジュアル)をイメージしておくことの重要性も学びました。 収支分析のステップは? 収支分析を行う際には、常に様々な切り口を意識することが必要です。切り口を考えた後、「what→where→why→how」とステップごとに分析を進めることも重要です。その結果、確度の高い分析が可能になると感じました。 このような様々な切り口と「what→where→why→how」というステップを意識し続けることで、分析結果を効果的にアウトプットできるようになります。また、数値の性質やグラフについての理解を深めるために探求を続けることも重要です。実践を通じて学んだことを自分の活きた知識とするとともに、書籍や研修を通じてさらに知識を深化させていきたいと思います。

データ・アナリティクス入門

数字に潜む新発見と未来への一歩

平均値の使い方は? 単純平均だけで判断すると、外れ値の影響でデータの見誤りが発生する可能性があることに気づきました。これに対して、加重平均や幾何平均についてはこれまで自分自身で使った経験がなく、今後習得していきたいと考えています。これまで、適材適所の数値の出し方をあまり意識していなかったという反省もあります。 データ分析はどう? セミナーの申込者数やWebからのコンバージョンの分析において、年商別や案件化金額などのデータを、散らばりや加重平均、幾何平均を取り入れて比較分析したいと考えています。具体的には、同じソリューションのセミナー同士や異なるソリューション間の比較、時期を分けた比較、Webとセミナーでのリードの比較など、さまざまな切り口で分析を行いたいと思います。 比較検討の進め方は? まずは、参加者が多く、分析しやすい直近のセミナーを対象に、年商別の申込者数や過去のセミナー参加数を、前回同じテーマで実施したセミナーと比較してどのような変化があるかを検討する予定です。その結果を踏まえ、他のソリューションのセミナー分析にも展開していく狙いです。

アカウンティング入門

未来を見据えるB/Sの新戦略

B/S活用はどう変わる? これまで、B/Sは「どれくらい資金を保有しているか」や「返済する必要がある資金の量」を中心に捉えていました。しかし、今後は自社ビジネスの成長のために、どのように資産を活用し、いかに資金を調達するかという将来像を描くためにもB/Sを活用できると実感しました。そのため、成功している同業他社のB/Sと比較し、自社の将来像を考察する必要があると考えています。 具体的には、以下の点が重要だと感じました。 将来の計画はどう考える? まず、自社の事業計画や資金調達計画を立てる際には、現状だけでなく将来を見据えた視点が欠かせません。現在の提供価値に加えて、将来的に求められる資産やその調達方法についても検討する必要があります。 成長戦略は何を学ぶ? また、これまでの業務では、過去の決算などの数値分析に重点を置いてきましたが、今後はこれらの数値を成長戦略に生かすため、将来志向のアプローチを取り入れたいと考えています。成長している企業や成功した企業が採用している戦略を学び、新たな技術やビジネスにも積極的に取り組む姿勢を持ちたいと思います。

データ・アナリティクス入門

数値の裏に潜む学びのヒント

データ比較の基本は? データ分析は比較という原則に基づいており、数値同士の比較を通してデータの実態や分布を探る作業です。まず、データの中心に位置する代表値を把握し、その上でデータがどのように散らばっているかを確認することが基本となります。代表値としては、単純平均のほか、加重平均、幾何平均、中央値が用いられ、散らばりを評価するには標準偏差の算出が有効です。 業務で分布を確認すべき? 普段の業務においては、データの分布を確認する試みが十分になされていないと感じます。分布を求めるためには、まずデータを分類するための項目が必要です。そのため、データ加工を前提として目的を明確にしながら項目を選定することが重要です。分析の目的と加工という手段を意識して検討することが、成功のポイントだと実感しました。 算出方法をどう活かす? 今回紹介された算出方法を効果的に活用するためには、標準偏差の算出、ヒストグラムの作成、加重平均や幾何平均を使いこなすスキルが求められます。今後は、これらの技法を実践的な練習問題などで訓練し、習得していきたいと考えています。

アカウンティング入門

分析で発見!改善のヒント

カフェの低単価の理由は? アキコのカフェは、ミノルのカフェと比べると単価が低いため、今後の売上高や利益の向上策を考えた際、売上原価や販管費の削減だけに頼りがちでした。しかし、カフェのコンセプトや立地、顧客の特徴をしっかりと把握することで、より前向きな改善策を検討できると感じました。 施設間の違いは? 具体的には、まず3月の各施設ごとの単月P/Lを確認し、施設間での違いや共通点、また異なる条件を洗い出したいと思います。そして、業績が振るわない施設について、原因を特定し、どのように改善するかをメンバーと具体的に話し合いながら進めていく予定です。もし次月のP/Lの数値に改善が見られたなら、まずはチームで乾杯したいです。 毎年の傾向は? 分析の手順としては、最初に3月の単月施設ごとのP/Lから業績の振るわない施設をピックアップします。その後、前月の2月および昨年3月のP/Lとを比較することで、毎年この時期に起こりうる現象やその要因を明らかにします。この過程で、現象が避けられないものなのか、あるいは数値を改善する余地があるのかを検証することが狙いです。

「比較 × 数値」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right