データ・アナリティクス入門

仮説検証で見つける成長のヒント

どう仮説を練る? 前職で教えられた問題解決の手法は、実践する機会が十分にありませんでした。仮説を立てる際、まずは現状把握が最も重要であることを再認識しています。一つの仮説に直感的にたどり着くことはありますが、そこに固執せず、ほかの可能性も考慮した複数の仮説を検討することが、根拠のある仮説を生み出すポイントだと感じています。 検証の切り口は? 動画の一例で「仮説と検証を繰り返す」という考え方が大変印象に残りました。これまでにも同様の手法を試みたことはありましたが、せいぜい数回で終わってしまい、検証の繰り返しが十分ではありませんでした。そこで、自分自身の検証と例で示された検証方法との違い、たとえばアプローチの切り口などについて、改めて考えてみることにしました。 枠組みの意外性は? フレームワークに基づいて検証する方法も、抜け漏れのない仮説を構築できる可能性を秘めています。フレームワークを利用することで、新たな発想や類推が生まれることが期待できる一方、自由な発想では偏りが生じやすく、適切な仮説検証が難しいと感じています。 時間がかかる理由は? また、他の社員と比べて明らかに時間を要している業務があります。正直なところ、その業務が自分に合っていない、あるいは心理的に好ましくないという言い訳をしてしまっていました。しかし、他者との比較を通じて何が原因なのかを見極め、行動に入る前の準備段階に問題がないか、あるいは結論から逆算したアプローチができているかを、仮説の検証とシミュレーションで実際に検証しているところです。 取り組みは十分? これらの対策は現在進行中です。現状を正確に把握し、問題点を見極めた上で、重要な局面で目指すべき状態や、そもそもやるべきことが実施できているかを確認しています。業務は忙しく時間的制約もありますが、抜け漏れがないか、逆算して工程を検証する取り組みを並行して行うことで、苦手な業務の改善につなげたいと考えています。もしうまくいかなかった場合は、さらなる仮説を立てて改善に取り組んでいくつもりです。

データ・アナリティクス入門

分析のアプローチで見えた新たな視点

分析とは何を指す? 分析とは「比較」のことを指します。現状を詳細に比較したり、物事を比較することで、解像度の高い理解や把握が得られます。 グラフや数値の算出方法を理解 今回の学習を通じて、具体的な分析アプローチとしてグラフや数値の算出方法について理解しました。データを算出する際には、代表的な数値(代表値)とデータの散らばり(分布)に分け、それぞれに具体的な手法が用いられます。代表値の例としては、単純平均、加重平均、幾何平均、中央値がありますが、特に幾何平均を用いた売り上げ予測の立て方が印象に残りました。また、分布の例としては2SDルールが紹介され、大枠の範囲を考慮した上で平均値を予想する方法が理解できました。 仕事における分析意識の向上をどう図る? ①分析のアプローチに対する仕事の意識 「分析 = プロセス × 視点 × アプローチ」という基本的な考え方を念頭に置き、これらに漏れがないように資料を作成したり、発言するといった意識を持ち続けます。 ②分析のアプローチに対する業務の行動 現状では単純平均を用いて比較することが多いですが、今後は分布やグラフを用いることで新たな気づきを得られるように努めます。 アプローチ方法をどう定着させる? ⓪分析全体の把握およびアプローチ方法の定着化 学習した「分析 = プロセス × 視点 × アプローチ」について、自分の言葉でまとめました。まずは用語や算出方法を含めて暗記し、アプローチ方法を定着させます。 SNS戦略での分析の改善策は? ①SNS戦略での分析の実施 現状では数値を取って把握することが主体で、十分な分析ができていません。今後は、定義に基づいた分析を実施し、比較が必要な場合には代表値や分布を用いて進めます。 データ分析の評価をどう行う? ②データ分析に関する評価 業務上、データから戦略や仮説を立てることが多いため、データに対して視点を持ったりアプローチを探したりすることで、新たな気づきを見つけ、それを共有します。

戦略思考入門

固定費を減らす!経済性活用術

経済性の学びは何を示す? 「規模の経済性」「習熟効果」「範囲の経済性」「ネットワーク経済性」「経費の経済性」について学びました。特に固定費の分散という考え方はあまり活用してこなかったため、強い印象を受けました。稼働率の向上が一単位あたりの固定費を下げることに繋がるという視点は、自社の現状把握に役立てたいと考えています。また、習熟効果には経験曲線の飽和があることから、イノベーションだけでなくテクノベートの追求も重要だと感じました。 [総評] 「規模の経済性」と「習熟効果」についての理解が明確で、固定費の分散を自社の現状把握に活かす姿勢が特に優れています。さらに、多種多様な事例に適用して知見を深めると良いでしょう。 さらなる思考の追求は? [さらに思考を深める問い] - 自社の状況に応じて「規模の経済性」をどのように活用できるか考えてみてください。 - テクノベートとイノベーションの違いをさらに深堀りし、それらがどのように相互作用するのかを検討してみてください。 [最後に] 今後も学んだ概念を具体的なビジネスの場面に応用し、独自の視点を広げていってください。これからも頑張りましょう! 範囲の経済性はどこに活かす? 薬局の開局経験を、運営で共通点の多いクリニックの開設に活用したり、介護業界への参入に役立てている弊社では、範囲の経済性が効いている部分があることに気づきました。ノウハウも貴重な資産であり、広い範囲で活用することで人や技術を共有でき、会社全体の労働分配率を向上させることができると感じています。 薬局業界では、労務費を抑えることが利益を維持あるいは増加させる鍵だと考えています。業務効率と生産性を上げる手法を模索する中で、テクノベートが重要であるため、設備投資の可能性を検討しています。その際、投資回収の視点を持ち、余裕ができた部分の人材活用方法を具体的に考えることで、生産性の改善が期待できます。狭い範囲に固有の固定費に固執せず、会社全体で共有できる固定費を明確化することが重要です。

クリティカルシンキング入門

実務に活かす!切り口探求の記録

授業の成果は見えてる? ライブ授業では、知識がまだ十分に定着していないと実感しました。初めの週の振り返りを通してその点を再認識するとともに、ある事例のワークでは切り口を見つけるのに非常に時間がかかりました。初めて取り組む内容だったため、ビジネスの現場において同じケースはほぼ存在しないという考えに至ったのは、良い学びだったと感じています。 分解手法の実践は? 分解の手法については、日々の業務や気になるニュースに対して実践を重ね、より定着を狙っていくつもりです。また、今回の事例は身近な体験であったこともあり、理解の助けになりました。しかし、施策のまとめにあたっては、情報の整理や抽象化する力の不足を痛感し、今後の課題として捉えています。 業務での応用はどう? 業務へのあてはめでは、まず月次実績の振り返りに分解の手法を活用しようと考えています。会議やミーティングでは、目的やゴールを再確認し、論点を明確にすることで、各参加者の立場を意識しながら進められるよう努めます。授業での学びを活かし、どのイシューに対するアクションプランなのかを意識して取り組みたいと思います。 学びの定着を実感? 学びを定着させるため、振り返りと実践を習慣化する行動計画も立てています。まず、記憶が断片的になっている点や整理しきれていない事項について、初めの週からの学びを再実施し、ノートをまとめ直します。さらに、日々の意識向上のためにスケジューラーのリマインダー設定も見直します。 実践の成果は見える? 実践面では、日々の業績確認の習慣として、売上の全体だけでなくカテゴリー別やブランド別に分解して確認する方法を導入し、月次実績にも応用していきます。会議の際は、日時が決定次第予定に反映し、目的やゴール、論点などをメモ欄に記載して意識を高めるとともに、ロジックツリーを用いて思考の整理や分析力の向上にも努めます。さらに、発信する内容および依頼された内容も、最初の目的とそのプロセスを常に意識しながら取り組む所存です。

データ・アナリティクス入門

挑む学び!仮説が広がる瞬間

課題と仮説の意義は? 今週は、課題設定と仮説構築の重要性について学び、サンプルデータを用いた実践を行いました。課題を具体的に明確化することで、その後の仮説の精度が向上することを実感しました。また、立てた仮説に固執せず、検証結果に応じて柔軟に視点を変えることの大切さにも気づかされました。仮説が立証されなかった場合には、別の原因を積極的に探る姿勢が求められます。 なぜ業務は偏る? 営業店の業務負荷にばらつきがある場合、単に「業務量が多い」という理由で負担が大きいと判断するのではなく、どの業務が集中しているのか、フローに非効率な点があるのか、人員配置に偏りがあるのかといった具体的な仮説を立てた上で、必要なデータを特定し検証することが重要です。仮説を基に、どのデータを取得し、どのようなグラフで可視化するかを事前に整理することで、分析の精度が高まります。たとえば、営業担当者ごとの業務時間の偏りを分析する際、移動時間の長さや業務の種類が要因となっているかを検証するために、ヒストグラムや散布図の活用が考えられます。 定量指標は何故大切? 課題設定の精度向上には、定量的な指標を明確にすることが不可欠です。業務負荷の偏りを評価する場合は、「1人あたりの業務処理件数」や「1件あたりの処理時間」を指標とし、営業成績の低迷については「訪問件数」や「折衝時間」、「成約率」を基に状況を把握します。現場の意見をヒアリングし、課題感を共有した上で、分析すべきデータを整理することで、的外れな分析を防ぐことができます。 現場の意見は鍵? また、仮説構築とデータ収集の精度を高めるためには、複数の仮説を立て、どの仮説が有力かを検証する手法が有効です。たとえば、「営業成績の低迷要因」として、訪問件数の不足、折衝時間の短さによる十分な説明ができていない、または高額商品の偏った営業活動といった仮説が考えられます。とりわけ、営業活動に関する領域知識が不足している状況では、現場からの意見を積極的に取り入れた仮説設定が必要だと感じました。

データ・アナリティクス入門

繰り返しが生む新たな発見

繰り返しの学びって? 全体を振り返ると、何度も同じ内容について整理し、記述を繰り返すことが学習において非常に重要であると実感しました。このプロセスの意味を学習テーマとは別に考えることで、新たな学びを得る機会となりました。 仮説疑問はどう? コースの初めに、「仮説とは何か」という疑問を持ち、データ分析のアプローチが状況により異なることを知りました。すでにデータが存在する場合と、データが無い場合では、分析に至る過程や組み立て方が大きく異なります。 既存データの活用は? 先にデータが用意されている場合は、目的を明確にした上で、データの特徴を探り、どの要素を比較するか、どのような傾向や動きを把握するかを平均、標準偏差、相関などの分析手法を活用して明らかにしていきます。その結果、見えてきた情報を体系的に整理することが可能となります。 無データの場合は? 一方、データが先に存在しない場合は、まず解決すべき課題や手がかりを見つけ、その観点に沿ったデータを収集します。具体的には、What-Where-When-Howという視点を順に確認し、マーケティングの基本的な枠組みを参考にしながら、適切なデータを取得し、課題を明確化するプロセスを進めます。その際、解決策や成功の可能性も同時に検討していきます。 記述重ねる理由は? また、同じ質問に何度も答え、記述を重ねる過程の意義についても改めて考えさせられました。学んだ内容が蓄積される中で、実際の業務にどのように適用できるかを具体的にブラッシュアップする必要があると感じました。 分析手法の見直しは? Q1では、分析に対する取り組み方を整理することができました。特にデータが既にある場合は、データを加工するための手法と知識が不可欠であることを再認識しました。しかし、今回のコースではその実践的な部分までは触れていなかったため、過去の振り返りと同様の記述となりました。今後は、実際に手を動かしてデータを扱う内容を学ぶ必要があると感じました。

データ・アナリティクス入門

営業の新たな武器:ロジックツリー活用法

問題解決にステップで挑む理由は? 問題について「ステップで考える」という当たり前のことができていないことに気づけました。自分の場合、ヒューリスティックに考える癖があり、アルゴリズム的に考えるのが苦手です。文中の「ステップで考える」とは、自分にとって苦手なアルゴリズム的な手法を指しますが、その手法としてロジックツリーの有用性を学べたことが大きな収穫でした。 ロジックツリーの具体的活用法とは? また、ロジックツリーの知識はありましたが、具体的な活用方法を改めて学べたことも大きいです。営業として売上分析をする際にMECE(Mutually Exclusive, Collectively Exhaustive)を意識していましたが、パレート分析に頼ることが多く、満足のいく結果を得られないことが多々ありました。今後はロジックツリーも活用してみたいと考えています。 今回学んだ「ステップで考える」方法やロジックツリーを用いて問題を分析し客観視させることで、問題意識の共有と具体策の議論が行えると期待しています。 社員教育の脆弱性をどう改善する? 私は所属する事業部で社員教育の脆弱性を強く感じています。問題提起を上席者や同僚に行っても、具体的な解決策の議論まで進めないことが多くありました。振り返ると、私の提案がMECEになっておらず、同意は得られても他者を巻き込むことができなかったと感じています。まずは自分の問題意識をロジックツリーに落とし込む作業を業務の合間に行おうと思います。 社員教育の必要性をどう確立する? 具体的には、社員教育の必要性についてロジックツリーを展開しようと思います。まずは「社内」「社外」という切り口で悪影響を及ぼす具体例のツリーを作成します。次に「研修制度」と「自主的な学び」という切り口で現状を示します。最後に、これらを強化・促進するための案を示し、上席者だけでなく同僚へも問題提起しようと考えています。 さらに、他の提案や営業政策などにもロジックツリーを活用してみるつもりです。

クリティカルシンキング入門

小さな数字の分解、大きな気づき

数字分解はどう考える? 数字を分解するという手法について学びました。まず、数値をWhen、Who、Howなどの要素に分ける際、①加工の仕方、②分け方の工夫、③分解の留意点に注意することが大切だという点を実感しました。たとえ分解した数値からすぐに有用な情報が得られなくても、それ自体が分け方に工夫が必要であるという気付きにつながります。 切り口は何が鍵? また、複数の切り口を見出すためには、目的や立場を踏まえて仮説を立てたり、データを表やグラフで表現してみることが効果的であると感じました。たとえば、ある施設の入場者数の減少を分析する際、切り口を4段階に丁寧に分けることで、減少の実態をより正確に把握し、次のアクションにつなげる経験が非常に印象に残っています。 MECEをどう活かす? MECEの考え方も学びました。全体を適切に捉えるためには、①全体集合体を部分に分ける(足し算)、②変数で分ける(掛け算・割り算)、③プロセスで分けるという三つの観点があること、そして問題解決のプロセスとしてWhat、Where、Why、Howの要素があることを再確認しました。重要なのは、まず全体を定義することだと感じました。 なぜなぜ分析は? 業務上の問題や課題解決に取り組む際、これまで自分の経験に基づく思い込みが原因となってしまうことに気づかされました。従来使用していたなぜなぜ分析は主観的な原因追及に陥りがちでしたが、今回学んだプロセスに基づいた分解手法で、より客観的に問題箇所を特定できると実感しています。 業務改善はどうする? 今後は業務において、GW明けから数字を分解する際に、①加工の仕方、②分け方の工夫、③分解の留意点を意識しながら進めていく予定です。実践を重ねる中で、常に複数の切り口で分析できるスキルの向上を目指し、既存の切り口が最適かどうかを検証しながら思考を鍛えていきます。また、MECEの考え方についても、モレがなくダブりがないかを確認しながら、業務に定着させられるよう努めていきたいと感じました。

デザイン思考入門

共感でひらくアイデアの扉

プロトタイプは何故有効? プロトタイプを作成することで、イメージがより具体化され、テストの段階で得られるフィードバックが非常に有益であると実感しました。性格や背景の異なる第三者に評価していただくことで、自分では気づかなかった改善点が明らかになり、製品やサービスのブラッシュアップに大いに役立つと感じました。 テストの流れはどう? また、テストのプロセスは、普段実施しているレビュー作業に似た面がありました。レビューでは、作成した提案書や設計書に対して指摘を受けつつ改善を重ねるため、限られた目的や範囲の中で行われる点が共通しています。一方、デザイン思考における「共感」「課題定義」「発想」「試作」「テスト」の各プロセスは、業務で何気なく行っている点とも重なっており、日常の仕事に応用できる部分が多いと改めて認識できました。 デザイン思考の柔軟性は? デザイン思考では、基本のプロセスの流れがあるものの、非線形に繰り返す柔軟性が大きな魅力だと感じました。議論が行き詰まってしまうリスクもありますが、「共感」や「協働」を重視することで、しっかりとコンセプトを捉え、効果的にアイデアを育てることが可能です。人間中心のアプローチやビジュアライズ・プロトタイピング、そして共感の連鎖といった視点が、より良い成果につながると理解しました。 多様な意見はどう? さらに、他の受講生が作成したプロトタイプを通じて、多様な背景を持つ人々の意外なアイデアに触れることができたのは、大変参考になりました。一人では気づけなかった発想が生まれ、異なる視点を取り入れてアイデアを育てることが、新たな解決策へとつながると実感しました。 新ビジネスは何故大切? 新たなビジネスプランを検討する際、リーダーシップやチームビルディング、経営戦略、マーケティングなど現実的な調整が必要となる中で、まずはアイデアの創出が何より重要であると再認識できました。デザイン思考で学んだ手法は、普段の業務においてもそのまま活用できる貴重なものだと感じています。

データ・アナリティクス入門

振り返りから導く次の一歩

数字で全体像を? まず、業務やレポート作成において、まずは数字を俯瞰して全体像を掴むことが大切です。比較しながらどの部分に差があるのかを見極め、その差が良いのか悪いのかを判断する、この基本的な現状把握のプロセスは非常に重要です。その際、大切なのは数字を正しく読み取り、自分の固定概念や先入観にとらわれずに客観的な視点を保つことです。 改善策は何故必要? 次に、改善策を検討する時は、原因についてできるだけ多角的に洗い出すことが求められます。さまざまな角度から原因や背景に目を向け、徹底的に分析することが、より実効性のある対策につながります。そして、対策を決める際には、目指す「あるべき姿」を明確にする必要があります。一見抽象的に聞こえるこの目標ですが、具体的な数字や例を挙げることで、現状とのギャップや将来への差異がより分かりやすくなると思います。たとえば、ある地域で学生数がトップになる学校を目標とする場合、現状との違いを具体的に示すことで、方針書や会計資料にも説得力が生まれるでしょう。 情報伝達はどうして? また、日常の業務報告資料や案件ディスカッションの際には、相手に理解してもらうための工夫が必要です。例えば、MICEの視点やロジックツリーといった手法は、情報を論理的かつ整理された形で伝えるのに役立ちます。社内で進めている施策の背後には、必ずあるべき姿とのギャップが存在しており、そのギャップを埋めるための取り組みであると考えながら、経営層の視点も取り入れて検討することが重要です。 なぜ意識して整理? 普段の業務—電話、メール、立ち話など—においても、意識して考えを整理する習慣が役立ちます。私自身は、考えを紙に書き出して見える化し、その内容を仲間と共有することで、抜け漏れや重複をチェックしています。一人で行動する限界を感じるときは、複数の視点や他のメンバーからの意見を取り入れることを忘れません。こうすることで、自分の考えに固執せず、より広い視野で状況を捉えることができると実感しています。

デザイン思考入門

量から質へ!アイディア革新の軌跡

なぜ量が質を生む? 今週は、アイディア出しと収束のプロセスについて多角的に学びました。scamper法、kj法、ブレーンストーミング、シナリオ法、ペーパープロトタイピングなど、さまざまな手法がある中で、とにかく量を揃えることが質に結びつくという基本原則を再確認しました。また、製品コンセプトの策定にはバリュープロポジションの考え方が重要であり、具体と抽象の往復を繰り返す過程自体が、開発や事業設計に通じる基礎であるとの気付きがありました。 多視点で選ぶ理由は? 実践面では、生成AIを活用した業務サポートに関するブレーンストーミングの際に、様々な視点からの可能性を踏まえた議論に努めました。scamper法やオズボーンのチェックリストに基づく複数のチェックポイントや質問をすべて網羅するのは難しかったものの、議論を重ねる中で、費用対効果や実現可能性など、判断基準の多角的な整理ができたと感じています。意見を収束させる過程で、再度アンケートを実施することで前向きな意見が多いことが確認でき、説得力のある選択を導き出すことにつながりました。 なぜ視覚化が不可欠? さらに、アイディアをただ出すだけでなく、それを整理し視覚化することの重要性を実感しました。物理的な集まりはできなかったものの、図解したスケジュールやアイディア共有、問題点の明確化を通じてチーム内の意思統一が進み、納得感のあるプロジェクト推進が可能になりました。この方法は、組織内の調整や他の業務にも応用できると感じ、今後も「拡張と収束」を意識して取り組んでいきたいと思います。 具体化のプロセスは? 最終的に、具体的なコンセプトに落とし込むには、拡張と収束、具体と抽象のプロセスを繰り返しながらブラッシュアップすることが不可欠だと確認しました。その時々の状況や課題を見直しながら、「正解に近い」答えを模索する作業は、得られた情報を柔軟に適用するリサーチのアプローチと似ていると感じました。今後もこの手法を意識して、問題解決に取り組んでいきたいと思います。

データ・アナリティクス入門

標準偏差と仮説思考で業務改善を実感

標準偏差をどう使う? 分布やばらつきに気をつけることは、これまでの業務でも意識していましたが、標準偏差という形で数値化できる点は新しい発見でした。これまでグラフなどで傾向やトレンドを可視化する手法は行ってきましたが、標準偏差を用いて数値で比較することは新しい視点でした。これを身につけるために、現在の業務の実例に落とし込み、実践していきたいと考えています。 仮説思考をどう改善する? 仮説思考について、常に意識はしているものの、今週の学習を通じて、自分に仮説の引き出しが少ないことや、自分に都合の良い仮説を作りがちであることを実感しました。これらを改善する方法として、同じ事象を分析する際も常に2つ以上の仮説を立てることをマイルールとし、少なくとも当講座期間中は意識していきたいと考えています。 予測に役立つプロセスは? 四半期ごとの目標を追いかけている環境にあり、週次や月次での予約動向、今後の動向予測などに触れる中で、週次の動向分析時に数値が良い(または悪い)理由を考える際には、Week2で学んだWhat,Where,Why,Howのプロセスを踏んで複数の仮説を持つことを意識していきます。例えば、直近の予約動向が落ち込んだ場合には、「仮説1: 地震の影響」、「仮説2: 地震の影響ではないかも?」というように、あえて真逆の仮説も立ててみるなど、自分の経験や感覚に寄らない形での複数の仮説出しを行っていきたいです。 新しい視点をどう取り入れる? 以上の点を意識していく具体的な方法としては、以下の点があります。 - **複数の仮説出し**:同類の仮説のほか、あえて逆の仮説も立ててみる。 - **標準偏差の活用**:数値化の感覚がないため、これまでに利用してきた分布図などを用いて数値化するとどう見えるかを実践してみる。複数の事例で行い、数値の見え方を感覚的に掴み、実戦で利用できるようにする。 これらを日々の業務で実践し、新しい視点や考え方を自分のスキルとして取り入れていきたいと思います。

「業務 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right