データ・アナリティクス入門

ビジネスの答えを導く仮説と検証のサイクル学習

仮説検証の重要性とは? 改めて仮説を立てること、そしてそれを検証することの重要性を学びました。ビジネスには正解がない場合が多いですが、その状況に応じた最適な答えを出す必要があります。そのためには、良い仮説を立て、データを収集し、それを素早く検証するサイクルを回すことが極めて重要です。このサイクルを通じて問題や施策を導き出すことを再認識しました。 フレームワークはどう活用すべき? また、仮説を立てる際にはフレームワークを活用すること、その仮説を検証するためには適切な指標を選び、収集したデータが反論を排除するための情報にまで踏み込めているかどうかを確認することも新たな気づきでした。これまでの経験を振り返ってみると、「仮説~検証」については何となく同じようなことをしてきましたが、仮説が網羅的でなかったり、検証が不十分だったりしました。今後は意識してこれを実行していきたいと思います。 未然防止に役立つ学びとは? 安全衛生活動(事故未然防止活動)にもこの学びを活用します。例えば、ヒヤリハットが年に1回発生している工場と全く発生していない工場では、現状は表面的な差異を見つけて、適当な仮説を立てて施策に結びつけようとしていました。しかし、これからはもっと網羅的に問題を分析し、適切な打ち手に繋げていきたいと思います。 ヒヤリハットの原因を追究するには? まず、そのヒヤリハットが「不安全行動」や「不安全状態」のどちらから発生しているのか、「4M」のどれに起因しているのかなど、問題の発生要素を網羅的に仮説立てします。それが本当にそうであるのか、データやヒヤリングを通して検証していきます。

クリティカルシンキング入門

思考を深めるクリティカルシンキングの秘訣

なぜ自己反省が大切? クリティカルシンキングの本質は、他者や提案を否定することではなく、自分自身の思考プロセスを客観的に振り返ることにあります。たとえば、「なぜ私はこの選択肢を良いと判断したのか」「どのような経験や価値観がこの結論に影響しているのか」といった自問を通じて、自身の思考の偏りや前提に気づくことが重要です。また、「自分の考えが絶対に正しい」という固定観念を避け、他者の異なる視点や経験から謙虚に学ぶ姿勢も求められます。チームメンバーや関係者との対話を通じて、自分が気づかなかった新たな視点を積極的に取り入れることで、より深い理解と柔軟な思考を育むことが可能になります。 どうして質問が大事? クライアントワークで先方とコミュニケーションを取る際にも、相手の言葉をそのまま受け入れるのではなく、「なぜ必要なのか?」といった疑問を深堀りすることを心がけています。実際の会話では、「その機能が必要な理由は何ですか?」「それによってどのような効果を期待されていますか?」といった質問を通じて、目的や背景を掘り下げ、より深い理解を得ることを意識しています。 なぜ市場を選ぶ? 新規事業の戦略を練る際も同様に、市場調査とターゲット層の明確化を行い、「なぜこの市場なのか」「なぜこのタイミングなのか」という視点で検証を重ねます。分析業務のレポート作成においては、単なるデータの羅列ではなく、「なぜこの結果になったのか」「どのような施策が有効か」といった要素まで考慮し、具体的なアクションにつながる提案を含めます。これにより、情報がより具体的で理解しやすくなり、実用的な価値を提供することができます。

クリティカルシンキング入門

データ分析の新たな視点を拓く学び

数字の見せ方はどう? グラフや比率などの数字の表示方法を変えることで、印象が異なり、最初の情報だけでは気づかない傾向や特徴を発見できることを学びました。グラフ化する際も、分類の仕方によって見えてくるものが変わります。まずはRaw Dataを確認して全体を把握し、その上で何を伝えたいのか整理して数字を整理する必要があると実感しました。 切り口は何で違う? また、数字の切り口によっては本質を見誤ることがあります。そのため、常に複数の切り口を持ち、一つの見方だけではなく、様々な切り口で数字を分析することが重要です。これまで経験に頼っていた切り口も、When、Who、Howを意識することで幅広く持てるようになると気づきました。 データの視点はどう? 私の仕事では日常的にデータに触れ、それを解釈しています。同じ現象の分析にも異なる視点を持つことを心がけています。具体的には、宿泊予約数の動向をデイリーのデータで見ていましたが、週次や月次で見るとどのような違いがあるのかを早速試してみたいと思います。また、他の切り口での分析も手間はかかりますが、視野を広げるために取り組んでいきたいです。 行動する意義は? 自分の思考の癖から抜け出すには、まず行動することが大切です。ひと手間、ふた手間加えて、複数の視点で分析することを心がけます。その際、これまでの分析結果や結論を再評価し、本当に正しいのか疑う姿勢を持ち続けたいです。また、MECE(漏れがなく、ダブリがない)の意識を持ち、ロジックツリーを活用していくことで、このフレームワークに対する苦手意識を克服していきたいと思います。

データ・アナリティクス入門

データの先にある学びの秘密

講義内容はどう感じた? ライブ講義を拝聴しながら、ポイントを迅速に判断し整理する力がまだ十分でないと感じました。どのデータセットを扱う際にも、何を明らかにしたいのかという目的意識をしっかり持ち、ロジカルシンキングや仮説立案のスピードを高める必要があると痛感しました。大量のデータを扱う中で、解決策の発見に注力するあまり、次第に目的から逸れてしまうことが実務上でも生じるため、その兆候を早期に掴むことが重要であると改めて認識しました。 営業戦略はどんな課題? 営業データを活用した営業戦略の立案においては、成約率向上という課題に対して、これまでの商談データを基に再検証を行う必要があります。過去にはあまり意識されなかったデータの粒度の粗さや、文章化およびビジュアル化の不足が、組織全体の納得感に影響していたと感じます。具体的には、なぜ成約率が低いのか、セグメントごとや担当者ごと、そして営業ステップごとの課題を明確にし、それぞれの原因を検証した上で、効果的な解決策を導き出したいと考えています。 UX改善は何が必要? サービス利用データを活用したUX向上施策の立案では、SaaSサービスのアクセスログをもとに、どの機能が利用され、どの機能が利用されていないかを明確に分類することが求められます。使われていない機能については、導入時からの利用状況や徐々に利用が減少しているのかなど、その背景を整理しながら原因分析を行います。さらに、仮説を立てた上で改善策を検討し、場合によっては機能の廃止も含めた対応を実施するために、顧客へのインタビューなども通じて検証を進めていきたいと考えています。

データ・アナリティクス入門

仮説力で拓く新たな学びの旅

仮説とは何か? 仮説とは、論点に対する一時的な答えを意味します。仮説を立てる際には、決め打ちせず複数の可能性を検討することが重要です。フレームワークを活用して、どの指標を基準に、何と比較するか、またそのためにどのようなデータを集計し、どのように見せるかを考える必要があります。 データはどう取る? また、着目する指標や比較対象のデータを収集する際には、「誰に、どのように聴くのか」という点が大切です。都合の良いデータだけに頼ると、誤った仮説を前提にしてしまうリスクがあります。他の可能性を十分に考慮することで、不要な仮説を排除し、より正確な情報に基づいた議論につなげることができます。 議論はどう進む? 日常の業務においても、仮説をもとに論点を提示し、議論を重ねる場面が多いです。これまで経験や肌感覚から決め打ちしていた仮説も、複数の視点で検討することで、より網羅的かつ具体的な検証が可能になります。仮説を裏付けるデータの示し方や、どのように比較し、提示するかという方法も試行錯誤の対象です。 人事事例はどう見る? 人事領域の取り組みとしては、スタッフが出会い採用内定、入社からその後の活躍、さらには休職や退職に至るまでのジャーニーマップを構築した事例が挙げられます。まずこれまでの経験や収集できるデータをもとにストーリーとしてのジャーニーを描き出し、その後、ヒアリングや不足しているデータの補完によって仮説を検証・肉付けしていくという方法です。このとき、現状の仮説が網羅的かどうか、また他の切り口がないかを再確認し、データの取り方や示し方を見直すことが大切です。

クリティカルシンキング入門

学びを楽しむために必要な習慣の見直し

学んだことをどう活かす? ほんの数週間前のことでも、復習しないと忘れてしまうのが人の常です。時間やコストを無駄にしないためにも、一度学んだことを終わりではなく、生涯にわたって続けることが大切だと感じました。 体系化のメリットは? 今回学んだ内容を自分なりに体系化し、今後に生かしていくことが大事です。これから思考する際には、これまでなんとなく行っていたことをこの体系に当てはめて進めることで、楽しく成長できると思います。 継続学習の重要性とは? 学ぶべきことはたくさんあります。クリティカルシンキングを基盤に、これからの時代を生き抜くために必要な学習が山ほどあると感じました。ただ、その多さに圧倒されるのではなく、一歩ずつ着実に学び続ける必要性を再確認しました。 また、人に教えたり、質問したり、見せたりすることで、自分だけでなく他人も活用しながら成長していくことの重要性を認識しました。 新環境での学び方は? 新たな環境においても、今回学習したことを忘れずに活用していきたいと思います。たとえば、自分の会社のデータから問いと仮説を立てたり、会社の方針をチームに伝える際に、グラフなどで視覚的にわかりやすく加工し、イシューを加えて仮説を立てて伝えるといった工夫が必要です。 データ活用のアプローチは? 週末には、興味のある会社のデータを調べて気になる箇所を洗い出し、イシューと仮説を立ててみることを続けます。これは楽しみながら続けることがポイントです。また、自分の会社のデータも調べて同様の取り組みを行い、さらにはフェルミ推定の問題集にも挑戦してみるつもりです。

クリティカルシンキング入門

新しい視点でデータを活用するヒント

データ分析の新たな視点は? データの加工や分析など、日常業務で行うことが多かったが、今まで機械的に区分していたことに気づいた。例えば、10歳刻みで分けることはあっても、19歳〜22歳の大学生という区分で考えることはなかった。しかし、高校生・大学生・社会人という区分で行動が異なることから非常に納得できた。また、MECEを意識して複数の切り口で分解することを、すぐに実践に活かしたいと思った。 効果的なフィードバック法は? 研修や会議等の企画、運営を行う際には、事後アンケートを実施している。これまでのフィードバックは、コメントや全体の感想のみを基にしていたが、アンケート取得時には役職や年次などの詳細なデータも把握できる。これにより、MECEを意識した層別分解を活用することで、現状をより具体的に把握し、改善点としてフィードバックを行いたい。より良い研修や会議の運営を目指すためにも、この手法を取り入れたい。また、営業推進業務においてもデータの取り扱いが多いので、率算出やグラフ化などを行い、データから得られる情報をしっかりと把握することで、全国への営業推進に役立てたい。 目的を持ったアンケートの活用法は? 研修や会議の計画に際しては、分解を踏まえ、自分が把握したい点や次回以降の運営のために知りたい点を事前にしっかり考えることが重要だと感じた。その結果、目的を持った事後アンケートの設問を考えることができる。アンケート取得後には結果だけに頼らず、MECEを意識した分解によって多くの情報を把握し、それに基づいて現状を知り、今後の業務に活かすようなフィードバックを行いたいと思う。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

クリティカルシンキング入門

データの力で業務効率が劇的アップ

数字をどのように活用するか? 数字をただ並べるだけでなく、合計や並べ替え、比率などの作業を行うことで、数字の持つ意味をより深く捉えられるようになります。また、グラフ化することで視覚的に数字を捉えやすくなり、その意味を浮き彫りにすることができます。特に「目に仕事をさせる」という表現は、非常に印象的でした。 グラフ化の新たな視点とは? グラフ化する際には、10代や20代といった規則性ある分け方だけでなく、数字の意味を強調するために規則性がなくても範囲を設定することが有効であると理解できました。さらに、分類分けを細かく行うことも重要です。複数の分類に分けることで、見えなかったものが見えるようになり、誤った解釈を避けることができます。そのためには、自身が行った分け方が正しいのか、他に適切な方法がないのかを常に問い続けることが必要です。 業務に役立つMECEとは? また、MECE(漏れなくダブりなく)の手法について、具体的な分け方やプロセスの切り分けを改めて学ぶことができました。この手法はバックオフィスの業務において、本部集約化に向けた検討時に非常に役立ちます。各業務のプロセスを順を追って確認することで、どの工程をどの部門や担当者が担うべきかを明確にし、適切な本部移管を進められます。 日常業務での学びの生かし方 自分の業務においても、数字の合計や比率を出すだけで終わっている作業が多いことに気づかされました。これからは、「目に仕事をさせる」グラフ化というステップを取り入れ、その重要性を再確認しました。今後の業務において、この学びを生かしていきたいと思います。

クリティカルシンキング入門

スライドで印象を強める視覚表現のコツ

メッセージの伝え方で意識すべきことは? スライドや文書を使ってメッセージを伝える上で、相手の立場に立ち、分かりやすく、読みやすく、読みたくなる工夫をすることが重要だと学びました。 どうやって理解を促進する? データを図表やグラフで可視化することで、相手の理解を促進できます。その際、グラフの種類、タイトル、単位の記載に配慮し、伝えたいことが一目で分かるグラフ作りを心がけるべきです。フォント、色、アイコンを使うことで、相手に印象を与えることも可能です。言いたいことと整合させてこれらを使うことが大事です。 また、メッセージとグラフを組み合わせる場合には、順番を整える工夫が求められます。文書を読む意欲を高めるためにも、アイキャッチや文書の構成、読みやすい体裁に配慮する必要があります。 プレゼン資料に求められる工夫は? 私の業務では、最終的にスライドを作成し説明する場面が多く、今回の学びを活かす機会が多いです。スライドはプレゼン用と資料用で作り方が異なると感じています。プレゼン用はその場で言いたいことがすぐに伝わることが重要で、資料用は必要な情報ができる限り含まれていることが大事です。 スライド作成で最も重要なことは? プレゼン資料を作成するときには、相手の立場に立ち、わかりやすさを追求し、究極的には一目で分かることを目指したいです。具体的には、最も伝えたいことを明確にし、枝葉を切り落としてシンプルなスライドを作ります。また、フォント、色、アイコンを使う際には、相手に与えたい印象を明確にして効果的に利用し、一目で分かるスライドに近づけたいと考えています。

クリティカルシンキング入門

思考の癖を減らす!効果的なアウトプット術

思考習慣の見直しは? 1周目を振り返ると、思考の癖をできる限り減らすために、物事を分解し、MECEで考えることが重要であることを学びました。また、視点、視座、視野を意識することも大切です。この考え方を自分に定着させるためには、アウトプットが有用です。物事を考える際は、まず「問いは何か」を考え始めます。このために、現状を丁寧に分析し、なりたい姿を見据えて何をすべきかを見極める必要があります。その後、誰かに協力してもらうには問いを共有し、同じ方向に向かって進むことが大切です。自分が理解するため、さらに人に伝えるためには、データを加工してグラフ化し、視覚的に分かりやすくすることが有効です。 チーム活用で何が? 新規事業を提案する際や、ハッカソンのイベントなどで、社外の人と4人のチームでこれらの考え方を活用しようと思います。提案や意見を伝える際に、今何を考えるべきかを考える際に、この学んだ考え方のコツを活かしたいです。また、アイデアを発表する際にも有用だと感じています。 発言前の確認は? 発言するときには、その内容が本当に正しいかを確認し、思考の癖が出ていないか一旦立ち止まって考えることも重要です。ハッカソンを始める際は、何をすべきか漠然と始めるのではなく、問いにしっかり意識を向け、現状を分析してから始めたいと思います。アイデアを出すときには、取りこぼしている事項がないか、現状を紙に書き出し、MECEを意識することも重要です。課題解決の前後で世の中の変化を示す際には、納得感を得られるデータを準備する必要がありますが、その見せ方にもひと手間かけたいと考えています。

クリティカルシンキング入門

グラフで見る!データ視覚化の極意

グラフ化で情報処理を速くするには? 視覚化することの重要性を学びました。特に、グラフ化により情報の処理が速くなる点が印象的です。グラフを作成する際には以下のポイントを忘れないようにします。 まず、タイトルを工夫して、事実の実況中継にならないように一言加えることが大切です。また、単位や軸の原点を示し、フォントや色、矢印などで強調部分を表現します。ただし、アイコンを使用する際には視覚化の理解を促すものを選び、ノイズにならないよう注意します。 どんなグラフを選ぶべき? 自分が伝えたいこととグラフが合っているか、一目で理解してもらえるグラフの種類を選択することが重要です。また、メッセージに沿った情報配置にすることも大切です。そのため、「何となく」で資料を作成せず、データを丁寧に収集して、読んでもらえる、興味を持ってもらえるスライド作りを心がけます。 例えば、役員のスケジュールを分析する際、文章だけで結果を伝えるのではなく、グラフ化したスライドを挿入してみます。 良い文章の定義とは? 良い文章の定義としては、 - 目的が書かれている - 内容がしっかりしている - 読んでもらえる ことを意識し、文章作成の際のタイトルも事実の中継ではなく、アイキャッチを引くものを考えて、丁寧に書いてみます。 また、色々なスライドやグラフに触れてみて、データをグラフ化する際に棒グラフ、円グラフ、折れ線グラフそれぞれが得意とするデータを理解します。 視覚化の習慣をどうつける? 最後に、とにかくグラフを作ってみて、文字化で止めないで視覚化する習慣をつけることが大切です。

「重要 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right