クリティカルシンキング入門

考える力を育む日本語体験

日本語の奥深さは何? 日本語の特徴について改めて考える機会となりました。普段何気なく使っている母国語である日本語ですが、その奥深さに気付かされる瞬間がありました。 ピラミッドの効果はどうなる? また、ピラミッドストラクチャーのポイントを整理することができ、問いをかけられることで思考が活性化されると実感しました。説明を構成するプロセスを通じ、一連の思考過程を体験できたのは大きな収穫でした。 論理展開の基盤は何でしょう? さらに、日常の業務やステークホルダーとの会話の中で、論理的な主張をするためには、主張を確かな根拠で支えることが重要であると感じました。つまり、言いたいこととその理由を明確に伝えることが肝要だと改めて認識しました。 特徴の活かし方はどう? 同時に、日本語の特徴を的確に捉えて活用する必要性も強く感じました。

データ・アナリティクス入門

挑戦が輝く!ストーリー分析の旅

分析の目標は? この講座を通じて、分析する際には何を達成したいのかというストーリーをまず考える重要性を実感しました。 授業で何を感じた? 先ほどのライブ授業では、受講生の皆さんからさまざまな回答が出され、分析には一つの正解がないという事実に勇気づけられました。これまで「正解じゃないのでは?」と自信を失うことが多かったのですが、まずは実践することの大切さを体感できました。 明日の戦略は? 明日の業務では、あらかじめストーリーを描きながら課題解決のプロセスを可視化してみようと考えています。今までとは違ったアプローチとして、考え抜いたストーリーをレポートに反映し、分析の意図をより明確に伝えたいと思います。 学びの効果は? この講座は、ワクワクする気持ちを抱かせる素晴らしい学びの機会となりました。

データ・アナリティクス入門

適切な比較が導く分析力アップの秘訣

比較の本質とは何か? 分析の本質は比較にあり、適切な比較対象を選ぶことが重要であると学びました。特に、比較対象が適切かどうかを判断する際には、分析の目的に立ち返ることが大切だと感じました。 外部環境の影響にどう対処する? 中期経営計画の策定や予算予想の達成に向けて、事業の課題や改善点を過去の実績から分析するだけでなく、外部環境が事業に与える影響についても分析し、仮説を立てる場面でこの知識を活用したいと思います。 日常業務での気付きと見直し 講義を聞いた時点では、一見すると当たり前の内容に思えることも、実際に練習問題を解こうとすると、目的を忘れ、適切な比較対象を考えられないことに気づきました。私自身も業務において、本来の目的から外れた分析や結論に至ることがあるため、適切な比較ができているかを常に見直す習慣を持ちたいと考えます。

データ・アナリティクス入門

フレームワークで拓く学びの扉

基本の振り返りは? 今週は、前回と同様に基本的な考え方をベースにした振り返り学習が印象的でした。特に、3Cや4Pの視点から仮説を立て、問題の定義を明確にする流れを重視する点が印象に残りました。 フレームワークの意義は? 授業では、課題解決のためにはフレームワークを活用し、定量的な情報に基づいた分析が重要であることを再認識しました。日々変化する業務の中で、分析活動が新たな気づきに繋がると感じました。認知バイアスや慣習により問題点に気づけなかったり、正しく認識できない場合もあるため、フレームワークによる抜け漏れのない仮説検証が課題解決に不可欠だと考えています。 課題の見直しは? また、今週の課題に関して、P4におけるアンケート結果や初級・中級クラスの充足度を踏まえ、どのような課題が存在するかを検討することが大切だと感じました。

データ・アナリティクス入門

仮説と実践で拓く最適解

プロセス改善の秘密は? 問題解決のステップの枠組みを学ぶ中で、複数の切り口から解決策を検討するプロセスを整理する方法の大切さを実感しました。各プロセスごとに重要点に沿って仮説を立て、判断基準を明確にすることで、より的確な解決策が導き出されると感じました。また、A/Bテストを活用した検証手法からは、有効性の高い方法を見出す「実践的な知識」を得ることができ、今後の業務に大いに役立つと考えています。 アンケート改善のヒントは? 顧客アンケートを実施する際には、回答率向上のためにA/Bテストを導入し、仮説を立てながら改善点を洗い出すプロセスを試してみたいと思います。具体的には、EDMやイベント等を活用する方法の有効性を検証し、アンケート収集方法の効率化および精度向上に繋げることで、実務に直結する解決策を見出すことができると期待しています。

データ・アナリティクス入門

数字の裏側を読み解く学び

データ深堀の意義は? 今回はこれまでの総括に加え、データを深堀するプロセスを順を追って学ぶことができました。目の前の数字を鵜吞みにせず、どのように分解できるかを都度確認することの重要性を再認識すると同時に、思い込みだけで動かないというデータ分析の基本を実感しました。 現場課題解決の鍵は? AIコーチングからは、実際の業務でどのようにデータを切り分け、仮説を立てて検証するプロセスを実践すべきか、また分解したデータをもとに現場の課題解決に直結するアクションプランをどのように構築するかという問いかけがありました。具体的には、まずKPIや社内で多くの方が注目している数字を切り分け、仮説の構築に取り組むべきと考えています。アクションプランについては、課題に応じて、自分の立場から現実的に着手できるものを見極めることで構築できると感じています。

データ・アナリティクス入門

仮説から見える実践の道

目的は何でしょうか? まず、分析に着手する前に、目的意識を強く持つことが重要だと感じています。どのようなデータを用い、どのような加工を施して活用するのかを熟考することで、分析の精度が高まると思います。 仮説設定の秘訣は? 次に、仮説を立てることが分析の出発点であり、実際の数値や製造指標を軸にポイントを絞り込むことが有効です。数字を単に羅列するだけではなく、各項目の重要度や意味を十分に考慮したうえで比較分析を行うことが大切です。 分析結果はどう活かす? また、これらの分析は、次の四半期の実績検討に向けた具体的な資料となり得るため、単なるデータの把握に留まらず、実践的なアウトカムにつなげていく必要があります。日常業務においても、データの活用状況を見直し、改善のヒントとする取り組みが求められていると実感しています。

クリティカルシンキング入門

数字分解で見つけた意外な学び

数字の背景は何? これまで、数字をただ眺めるだけでなく、様々な角度から加工・分解することで、その背景や意図を理解していくことの重要性を実感しました。分解の方法に迷うことなく、まずは手を動かしながら得られるビジュアルな情報をもとに、次に何をすべきかを考える姿勢が大切であると気づきました。 数字はどう作られる? また、現在の業務では、コスト要因に関する数字を細かく分解して検証することが求められています。そのプロセスを通じて、数字がどのようなプロセスや要因で形成されているのかを具体的に把握することが可能となり、今後のコスト管理や分析において非常に有益な経験となると考えています。 見るべき視点は? こうしたプロセスを実際に行いながら、数字をどのように捉え、分解して理解しているのか、その視点について改めて問う必要性を感じています。

アカウンティング入門

貸借対照表から掴む成長戦略

貸借対照表で何が見える? 貸借対照表からは、資金調達の方法や、集めた資金をどのように事業に投下してビジネスを推進しているのかを学ぶことができました。無借金経営も一つの手段ですが、事業の成長性や将来の戦略を考える上では、借入を選択肢に加えることも重要であると感じました。 業務の見直しはどうする? 日々の業務においては、同じ作業に終始しがちですが、自社の貸借対照表を意識して見るとともに、同業他社や興味のある企業の情報にも目を向けるようにしています。ただし、現在の部署やポジションでは、その知見を活かすタイミングが少ないと感じています。 学びはどこへ? 今後は、この単科をやりきるとともに、その他の単科や学び放題の講座も受講して知見を深め、財務諸表を読む力を高めるために、アウトプットができる環境作りを進めていきたいと考えています。

アカウンティング入門

流動 vs 固定、財務分析の奥深さ

資産と負債はどう関係? 流動資産が流動負債を上回る状態が良いことを理解しました。しかし、固定資産と純資産の関係についてはまだ十分に理解できていません。新しい業界と伝統的な業界では、貸借対照表における固定資産の比重が異なることが分かりました。 返済能力はどう評価? 流動資産と流動負債のバランスを見る際に、短期返済が必要なものを即座に返済できるかを確認したいと思っています。業界特有の特徴を理解し、共通点と相違点を把握した上で、定量的および定性的に分析を進めていきたいです。 支援前に何を確認? 業務での使用イメージはまだあまり湧きませんが、損益計算書と同様に貸借対照表も詳細に確認し、顧客企業への支援を始める前に定量分析や定性分析をしっかりと行うことが重要です。また、数年分の貸借対照表を見て、その推移を確認することも必要です。

アカウンティング入門

数字だけじゃなく実像を読み解く

財務の見方はどう? 今回の学習で、業種や企業の特性に応じた財務諸表の読み方が変わることを実感しました。単に数字を見るのではなく、それぞれの企業の特徴を踏まえて仮説を立てながら財務諸表に向き合うことで、より深い理解が得られると感じました。 実践で力をつける? 具体的には、CVCの業務において、投資先やアライアンス先企業の財務諸表を詳細に分析し、企業の強みや弱みを把握する手法や、日経新聞などで注目している企業の情報をもとに投資判断や戦略の立案に活かす方法を学びました。また、実際に特定の企業の財務諸表を基に予想を立て、実態との比較検証を行うサイクルを実践することの重要性を再確認しました。さらに、学んだ内容を上司や同僚に報告してフィードバックを受けることで、実践的な知識をさらに深め、業務に生かしていこうという意欲が高まりました。

データ・アナリティクス入門

仮説で広がる学びの未来

仮説思考はなぜ重要? データ分析において仮説思考が重要であると実感しました。しかし、まだ完全に身についていないため、今後の業務の中で積極的に意識し、訓練していく必要があると感じています。理解したつもりでも、実際に言葉にして表現する際には苦労することもありました。 経験則から何が変わる? 今回の学びを生かし、所属する部門で担当している市場動向や契約に関するデータの収集と分析に、従来の経験則に基づく判断から仮説思考に基づいた立案へとシフトしていきたいと考えています。 言語化はどうする? さらに、言語化の訓練を重ねることで、仕事はもちろん日常生活においても仮説思考プロセスを意識して課題に取り組む習慣を身につけたいと思います。そして、適切な結論を導き出すために、さまざまなフレームワークや手法の活用を習慣化していく所存です。
AIコーチング導線バナー

「重要 × 業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right