データ・アナリティクス入門

数値の裏に潜む学びのヒント

データ比較の基本は? データ分析は比較という原則に基づいており、数値同士の比較を通してデータの実態や分布を探る作業です。まず、データの中心に位置する代表値を把握し、その上でデータがどのように散らばっているかを確認することが基本となります。代表値としては、単純平均のほか、加重平均、幾何平均、中央値が用いられ、散らばりを評価するには標準偏差の算出が有効です。 業務で分布を確認すべき? 普段の業務においては、データの分布を確認する試みが十分になされていないと感じます。分布を求めるためには、まずデータを分類するための項目が必要です。そのため、データ加工を前提として目的を明確にしながら項目を選定することが重要です。分析の目的と加工という手段を意識して検討することが、成功のポイントだと実感しました。 算出方法をどう活かす? 今回紹介された算出方法を効果的に活用するためには、標準偏差の算出、ヒストグラムの作成、加重平均や幾何平均を使いこなすスキルが求められます。今後は、これらの技法を実践的な練習問題などで訓練し、習得していきたいと考えています。

クリティカルシンキング入門

予算作成を成功させるMECE分析のコツ

分析と成功の考え方は? 「分かる」は「分ける」と同じ意味だということが重要です。分析の結果、顕著な傾向が見られない場合でも、それは失敗ではなく、むしろ傾向がないことが確認できた成功です。特に、MECE(漏れなくダブりなく)を意識し、分析の切り口を明確にすることが大切です。 来期に向けた予算分析法 来期の予算作成に向けては、今期のデータをMECEを活用して分析する予定です。具体的には、四半期ごとの傾向、各勘定項目ごとの傾向、各支店ごと、固定費用と変動費用、そして担当者ごとに分けて分析します。また、予算作成の時期を待たず、今から準備を進めることも可能だと感じました。 代替案とスムーズな承認 現状を追う目線とは異なる視点でデータを見て、必要なことを考えます。どのような資料を作成すれば予算承認が通りやすく、承認者が納得しやすいかを考慮します。さらに、他の国や会社全体の状況を把握し、予算取得のために想定される壁があるかどうかを調査し、事前対策やプランBを考えておきます。承認後のフローも整理し、次のアクションにスムーズにつなげられるよう準備を進めます。

データ・アナリティクス入門

仮説検証で未来を切り拓く一歩

なぜ仮説検証が必要? 今回の振り返りを通じ、まず仮説検証の重要性を再認識しました。数字を単に眺めるだけではなく、要素ごとに分解し、さまざまな仮説を立てながらデータを検証のツールとして活用する方法が有効だと感じました。また、比較を意識した分析を行うために、率や代表値を用いる手法が非常に効果的であるという考えにも改めて気づかされました。 実績把握で何が変わる? これらの学びは、月次実績の把握や事業計画の検討にも応用できます。過去の実績に基づいて仮説を立て、検証を重ねることで、次年度への具体的な打ち手が明確になっていくと実感しました。前年同月比や前年同期比を活用する手法も、現業務において引き続き継続し、より深い分析に結びつけたいと考えています。 復習と共有で成長は? また、ナノ単科の画面が見られなくなる前に、回帰分析や代表値の部分をしっかり復習し、自分の知識として定着させることが必要だと感じました。さらに、アウトプットの重要性を痛感したため、自ら立てた仮説や検証結果を周囲と共有し、意見を取り入れることで自身の成長を一層促進していきたいと思います。

データ・アナリティクス入門

目的意識と比較で開く新たな発見

目的意識はどこに? まず、分析の目的を考えることが当たり前だと感じられるかもしれませんが、私にとっては大きな気づきでした。これまで、データを可視化すれば自然と新しい発見や傾向が見えてくると漠然と思い込んでいました。しかし、まず「何のために」分析をするのかという目的意識がなければ、求める結果は得られないということに気づかされ、仕事への取り組み方が変わると感じました。 比較の意義は? また、分析=データの可視化というイメージだけでなく、その基本は「比較」にあるという新たな発見もありました。具体的な比較対象や基準を設定することで、意思決定がしやすくなります。たとえば、安全衛生に関するタスクでは、法令遵守の状態を確認するために法規制と社内ルールを比較し、どのレベルで何を行うべきかを整理する必要があります。 方法はどうする? 今後は、具体的な方法はまだ模索中ですが、「目的」と「比較」を意識し、どのような結果を得たいのかを明確にしながら取り組んでいきたいと思います。仕事に迷いが生じたときや上司への説明・説得が必要な時に、この考え方を生かしていきます。

データ・アナリティクス入門

柔軟な仮説が未来を拓く

初期仮説の危険性は? 仮説は初めから決めつけず、幅広い視点で持つことが大切です。あらかじめ仮説を立て、それに基づいて検証するため、もし初期の仮説に誤りがあれば、その後の工程にも大きな影響が出る可能性があります。 計画的データ収集は? また、仮説を検証する際には、必要なデータを計画的に収集することが求められます。必ずしも全ての情報が揃っているとは限らないため、誰にどのように情報を収集するか、目的に沿って進める必要があります。 売上データで何発見? 日々の業務で売上データを見る中で、発生した事象に対してまずは幅広く仮説を出すことが有効だと感じました。これまで漠然とした感覚で仮説の検証に取り組んでいたため、今後はより意識的に取り組むことが必要だと思います。 周囲の意見は頼も? 仮説を立てる際は、自分一人で考えるのではなく、周囲のメンバーからの意見も取り入れ、網羅性を高めるよう努めます。過去の経験や先入観をなるべく排除し、フラットな視点で物事を俯瞰することを心がけるとともに、仮説検証の目的を踏まえて最適なデータ収集方法を選択していきます。

クリティカルシンキング入門

データ活用で見えた新たな視点と工夫

データ加工法をどう活用する? データの加工法について学びました。与えられたデータをそのまま使うのではなく、自分で項目を追加することを意識することが重要です。例えば、絶対値や相対値(比率)を追加することで、データにひと手間加えることができます。数字をグラフにすることも非常に効果的です。また、データを分解する際には、複数の切り口で考えることで異なる見解が得られることがあります。 人件費分析で何を検証する? 現在、人件費分析を行っているため、今回学んだ切り口や加工法を実践しています。具体的には、時間外労働時間の妥当性を検証するために、データを性別、既婚未婚、年齢(若手かベテランか)、部門ごとに切り分けて情報を抽出し、グラフで可視化します。 PowerBIでどう可視化する? 人事データを入手したら、比率や不足している情報を追加し、勤怠情報としての表を作成します。このデータを可視化するためにPowerBIを使用し、グラフ化します。さらに、散布図を用いて時間外労働時間と相関のある事柄を確認し、そのデータを参考に実際に関連性があるかどうかを調査します。

データ・アナリティクス入門

平均再発見!生データが語る学び

平均って何だろう? 基本的な代表値である平均とばらつきを再確認しました。また、関連するフレームワークの動画を通じて、単純平均、加重平均、そして幾何平均といった具体的な計算方法が存在することを学び、以前は知っていた幾何平均についても、計算方法や名称を含めて改めて理解することができました。 中央値はなぜ大切? 技術職として、日常的に平均値や標準偏差を用いたばらつきの分析を行っています。中央値については、その定義や目的を理解しているものの、実際の業務では頻繁に使用することはありません。しかし、中央値が持つ目的を意識し、グラフや図を用いて全体の分布や外れ値の有無を確認することで、解析の正確性を担保していると感じています。 外れ値の確認方法は? また、普段からデータに触れる中で、改めて図での表示を行い、データの前処理における外れ値の存在を意識することの重要性を再認識しました。どの業務においても、正しい目的意識を持つことが根幹であると実感しており、今回学んだ単純平均、加重平均、幾何平均を活用して、目的に即した正確な解析を進めていきたいと考えています。

クリティカルシンキング入門

自身のクセを知る:客観視の挑戦

考えのクセ、気付いてる? 自分には考え方のクセがあることを改めて実感しました。具体的には、客観的な視点よりも主観的な考え方に偏ったり、データや数値よりも自分の経験を優先して考えてしまうことに気づくことができました。このクセを直すためには、まず自分自身で常に意識することが大切ですが、それだけでなく、人とのディスカッションの機会を多く作って練習していくことが必要だと感じています。 アンケートはどう読む? 特に顧客アンケートの分析時には、考え方のクセが出てしまわないか注意が必要です。アンケートの自由記述欄では感情移入しやすく、主観的な判断に陥ることがありますが、そうならないように感情に流されず、アンケートから客観的なインサイトを得られるよう分析したいと考えています。 意見交換は必要? まずは自分で現在の課題を意識しながらアンケートを分析します。その後、他人に分析結果を説明して、論理に飛躍がないか、見落としていることがないか確認してもらう機会を設けたいと思います。今後は、多くの人と意見交換を行い、視点の幅を広げることを意識していきたいです。

クリティカルシンキング入門

数字で掴む新たな視点と成長

数字分解の大切さは? 今回の講義では、数字を分解して考える方法や、さまざまな切り口を試し、定義を明確にしてMECEの考え方を適用する手法を学びました。普段あまり意識してこなかった視点から、改めてデータを多角的に検討することの大切さを実感し、新たな気づきを得ることができました。特に、数字に苦手意識があった私にとって、グラフに少し足して割合を示すなどの工夫が、問題点の発見を助けてくれると感じました。 採用データは何見る? また、採用に関する応募者のデータを、自身で分解し、多角的に検討する重要性にも気づかされました。これまでは、採用媒体の営業担当からの数字の共有を受けるだけでしたが、自分でデータを操作し、さまざまな属性からボトルネックを見つけていく試みは非常に有意義でした。今後は、これまでの採用データを自分なりに細かく分解し、現状の強みや弱みを洗い出して、次の募集掲載の対策に生かしていきたいと考えています。 継続的な対策は? 一度の検討に留まらず、継続的にデータを分解し、数字に基づいた対策を立案できるよう努めていきたいと思います。

クリティカルシンキング入門

多角的視点が解くデータの謎

多角的視点はどう? データを見る際には、様々な切り口を持つことの重要性を改めて実感しました。切り口のレパートリーが少ないと、誤った解釈に導かれる恐れがあるため、一つのデータに対して複数の視点から分解することが、正確な解釈へとつながると感じています. 応募増加の理由は? 具体的には、月間の採用進捗を確認する場面で、前月から応募が増加した場合、属性・性別・年齢などの観点でデータを分けて検証すれば、その増加の要因がより明確になると思います。こうした実践的なアプローチが、日常業務における分析力向上に役立つと考えています. 切り口は変える? また、普段からデータを見る機会が多いこともあり、いつもより2パターンほど違った切り口で検討することを意識していきたいと思います。これにより、単に数字を見るだけでなく、背景にある要因や意味まで理解する助けとなり、分析の幅を広げることができると思います. 深い洞察は得られる? このような進め方を継続することで、データの分解に対するレパートリーをさらに充実させ、より深い洞察を得られるよう努めていきたいです.

クリティカルシンキング入門

数字が紡ぐ革新のストーリー

パターンはどう見る? 観測された事象データの相関比較から、背後に潜むパターンや特徴を発見し、未知の事象に対しては予測や仮説を立て、具体的な施策を検討しています。各プロセスでは、項目と事象の関係をブレークダウンして文字化することが重要であると考えています。 施策の領域は? また、ブレークダウンする際の項目数が多いほど、検討すべき施策の領域が広がるため、PDCAサイクルの回転回数を増やすことが可能となり、成功に近づけると感じています。 協業の効果は? この手法は、協業候補先企業の事業分析や、外部要因・内部要因の分析、事業戦略、シナジー効果などのスライド資料作成時にも有効です。具体的には、データを分解して対象企業の各販売業界ごとの比率を明確にし、各業界の今後の市場成長率との相関を基にした売上推移シミュレーションのデータ化やグラフ化が求められます。 結論はどうする? さらに、パワーポイント作成時は「結論-論拠×3」という構成を意識し、スライドメッセージと添付グラフの配置にも工夫を凝らすことで、論拠の濃度と伝わりやすさを向上させています。

データ・アナリティクス入門

実践で磨く仮説思考の秘訣

正しい仮説はどう作る? 仮説を正しく構築することで、検証マインドが高まり、ビジネスの精度向上につながります。そのため、適切な仮説を立てるスキルの習得が求められます。また、「what」「where」「why」「how」といった視点を意識することで、課題の把握や解決方法の糸口を見つけることが可能です。 販売分析の秘訣は? 日々の販売分析においても、仮説思考を取り入れるよう努めています。現場担当者が実務の中で肌感覚で感じている課題について、定量的・定性的な両面から評価し、チームとして合意のもとで進めることが重要です。 仮説は独立すべきか? また、仮説は一つに絞らず、対策や重要性、影響力を十分に考慮した上で、業務への反映が必要です。複数の可能性を見極めながら、最適な対策を検討していく姿勢が大切です。 改善プロセスは? 具体的なプロセスとしては、まず現場担当者が感じている課題を確認し、併せて実績数値などのデータを基に問題点を洗い出します。その上で、いくつかの仮説を立て、裏付けとなるデータや対策案を検討しながらプロセスの改善を進めています。
AIコーチング導線バナー

「意識 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right