データ・アナリティクス入門

データ活用で未来を切り拓く鍵

目的を明確にする重要性は? 目的を明確にすることと、正しい比較を行うことは非常に重要です。動画の例では、提示された数字をそのまま信じてしまう場面がありましたが、実際のビジネスシーンでも同様の例は多いと感じます。そもそも、その数字は何のために存在するのか?どのような基準で比較しているのか?比較の手法や数字の計算、抽出方法は正しいのか?データの精度や信頼性も重要です。AIの助言を受けて、身近な実例として新聞のチラシやテレビショッピングに出る数字を見て、何を示しているのか粘り強く理解していきたいと思います。例えば、「当社比」とは一体何を指しているのか?私の両親もそのまま鵜呑みにしているようなので、注意したいところです。 戦略経理とは何か? 経理に関しては、記帳や財務諸表作成がAIや外注で可能になると考えています。ただ、仕訳を行い記帳している際に「不思議だ」と思う点があり、そこを深堀りすることで経費や売上を分析し、会社全体が利用できるデータにすることができるのではないかと考えています。「戦略総務」や「戦略人事」という言葉を聞いたことがありますが、「戦略経理」という考え方もあって良いのではないかと感じます。 データ・ドリブン経営をどう進める? 意思決定にはデータの利用が不可欠です。データ・ドリブン経営という言葉が以前からありますが、そもそもデータに基づかない経営が存在するかという疑問が湧きました。実際の現場では感覚や感情に基づく経営が主流でしたが、私が関与する場面ではデータに基づいた意思決定を推進していきたいです。 仕事の目的を再確認する重要性 業務全般において、目的を明確にすることが重要です。これまでの仕事の中で、議事録作成などの業務において何のために行うのかという明確な目的がなかったため、非効率的となっていました。しかし、目的を明確にすることで効率的に正しい結果を得られるようになることを意識したいと思います。 転職活動で心掛けることは? 現在、転職活動中で新しい職場を探している中、今後の行動指針として、意思決定に際しては必ず数字の裏付けを吟味すること、目的の明確化を徹底することを心掛けたいです。また、以前に読んだ本や少しかじった統計検定の内容と重なるところが多いことから、統計学を一度学び直したいと考えています。

データ・アナリティクス入門

ビジネスフレームワークで仮説を確かめる方法を学ぶ

効果的な仮説の立て方は? 今回は、「Why(原因の分析)」について学びました。このステップでも「What」「Where」同様に、複数の切り口を持ち、複数の仮説を立てることが重要だと実感しました。特に、切り口の感度の良さや仮説の筋の良さが問題解決の精度に大きな影響を及ぼすことを改めて痛感しました。高い視座と広い視野を持ち、ビジネスフレームワークを活用して大局的かつ網羅的に複数の仮説を立てることが有効だと学びました。 具体と抽象の使い分け方は? また、仮説の分類として「問題解決の仮説」と「結論の仮説」があり、前者は具体化、後者は抽象化が肝要です。具体と抽象を使い分けて行き来できるように練習することが必要だと改めて感じました。 データ検証のプロセスの重要性は? そして、仮説は検証して初めて意味を持ちます。データを収集し(既存データに不足があれば新たにデータを集め)、指標を定め、その指標で比較できるように適宜データを加工し、段階的に仮説を絞り込み検証を繰り返すプロセスが重要であると学びました。 ツールを活用するために何が必要か? ツールがあることは助かりますが、使いこなせなければ意味がありません。仮説設定やデータ収集・結果の比較を通して「経験や勘による決め打ちや意図的な絞り込み」という負の側面が出ないように、正しいプロセスを意識し、目的に適したツールを正しく使いこなせるように練習を繰り返したいと考えています。 次期事業計画の策定にどう活かす? 次期中期事業計画の策定時には、このプロセスを活用します。「なぜ今ターゲット顧客から選ばれているのか」を深堀りし、仮説を設定してその再現性と競争優位の持続可能性を検証したいと思います。どのビジネスフレームワークを使って仮説を設定し、どの指標で比較し絞り込むかを考え、一つずつ丁寧に進めていきたいです。 客観性と説得力を保つためには? 『経験や勘で導き出した答えの確からしさを、ビジネスフレームワークを用いて正しいプロセスを踏むことで確認する』という意識を持ちながら、フレームワークの選定や指標の設定、データの収集・比較、仮説の絞り込みなどの過程で、経験や勘による決め打ちや結論ありきの意図的なものにならないよう常に意識し、客観性と説得力を担保するように努力します。

クリティカルシンキング入門

イシューを意識して業務改善を実践するコツ

問いから始める意義とは? 仕事や業務の成果を上げるために、イシュー(問い)に基づいたアプローチが非常に重要だと感じました。以下に実際の感想文を編集したものを記載します。 まずは、問いから始めることが大切です。自分が問題に直面した際、最初に何を問うのかを明確に意識し、その問いを組織全体で共有することが肝要です。問いは具体的かつ一義的に理解できる形にし、常にその問いを意識して進めることで、ぶれない対策を講じることができます。 データから課題を見極めるには? 実際に、自身の業務において成果が出ないときや行き詰まりを感じたときには、データを分解し、その中から最も重要な課題を見極めることが必要です。この過程を通じて、適切なイシューを特定し、その改善策を多く出し、最適なものに絞り込むことが有効です。 組織全体で共通イシューを議論する重要性 また、組織運営においてもイシューに焦点を当てることが重要です。特に、KPIの設定や業務効率化、新人の教育などにおいて、多くの課題があるため、組織全体でイシューを明確にし、議論する機会を設けることが求められます。 MTGをどう改善する? 次に、MTG(会議)の改善についてです。現状では、自他部署とのMTGが報告と意見交換で終わることが多いですが、事前にイシューを特定し、議論の焦点にすることで、MTGをより意義あるものにし、業務改善につなげることができます。 さらに、自分自身の業務においても、行き詰ったときや結果が出ないときには、状況やデータを分析し、イシューを特定して改善策を考える習慣をつけることが大切です。 定例MTGでのイシュー活用法 具体的には、自組織の定例MTGでイシューを提示し、議論の対象とすること、都度、事前に上長にネゴシエートし、組織内に告知してメンバーに考えてもらっておくことが必要です。また、マーケティングや営業のキャンペーン結果をフィードバックする際にも、結果の分析で見えてきたイシューを特定し、事前に議論の機会を探ると良いでしょう。日々の業務においても、週1回以上、イシューを特定して改善策を考える習慣をつけるようにします。 以上の点を意識しながら、日々の業務や組織の運営に取り組むことで、より効率的で効果的な成果が得られることを期待しています。

データ・アナリティクス入門

仮説とデータ収集の極意に迫る

複数仮説をどう活用する? 仮説を考える際には、「複数の仮説を立てること」や「仮説同士に網羅性を持たせること」が重要です。その上で、仮説を検証するために必然的にデータを収集することが求められます。ケースの解説では「3C」「4P」が挙げられており、私が考えたケースの回答も結果として「4P」の視点に近かったですが、意識的に「4P」から発想したわけではありませんでした。どの場面でどのフレームワークを使用するべきか、まだ身についていないと感じましたので、今後はフレームワークを有効に使えるようにしたいです。 データ収集のポイントは? データ収集の際にも、仮説を持った上で臨むことが重要だと再認識しました。例えば、故障対応の増加で残業が増えているという問題に対して、「昨年と今年の故障件数」の比較ではなく、「1件あたりの対応時間」を比較する方が良いという解説を受けて、その認識が強まりました。 日常業務での仮説と分析 仮説を考え、必要なデータを収集し、分析することは日常業務のあらゆる場面で必要です。具体的には、「毎月の財務諸表の比較分析」、「毎月の営業活動の振り返り」、「毎週のユーザー数の動向分析(新規獲得率、解約率、更新率)」などが挙げられます。 中長期的視点での活用法 また、中長期的な視点を持つ業務では、年間の目標設定やその達成に向けての方法を考える際、中期的なビジョンを考える際に、フレームワークの活用が有効です。特に中長期的な視点では、その活用をより一層進めていきたいと思います。 データ自動化とフレームワーク整理 日常業務で必要なデータ収集は現時点では自動化されていますが、収集されたデータに漏れがないか、今一度チェックすることが大切です。また、仮説を立てる際にはフレームワークの活用が有効と感じていますが、どの場面でどのフレームワークが有効かを一度整理したいと思います。そのために、フレームワーク集の書籍を手元に置いておく、もしくはChatGPTにどのフレームワークを使うかを尋ねるという方法も考えています。 独自視点はどう持つ? ただし、フレームワークに頼りきりになると内容が似たり寄ったりになりがちですので、常に独自の視点がないかを意識していきたいと思います。

データ・アナリティクス入門

ロジックで切り開く未来への一歩

どこに問題ある? 問題を明確にするため、まずはプロセスごとに分解し、どの段階に問題が存在するかを捉えます。具体的には、What(問題の明確化)、Where(問題箇所の特定)、Why(原因分析)、How(解決策の立案)の4つのステップに沿って検討します。ロジックツリーを活用することで、体系的かつ効率的に思考を進め、見落としのない分析が可能となります。また、全体を複数の部分や変数に分解する層別分解も有効です。 仮説はどう広がる? ライブ授業では、既に把握している内容を元に分解を進め、仮説を複数立てて何を明らかにするかを検討していきます。グラフなどで可視化し、重点的に見るべき箇所を明示することで、ストーリー性を大切にしながら分析を進めています。仮説を広く立て、可能性のある原因を網羅的に洗い出す点がポイントです。 日常分析の実践は? 日常の分析業務では、ロジックツリーを活用したプロセス分解がまだ十分でないため、正確な分析を目指す実践に取り入れています。解決の4ステップに従って、原因追及だけでなく提案まで行うことを意識し、当たり前のことにも疑問を持ち「なぜ」を繰り返すことで、自然とできるようになるまで継続していく所存です。 スキル習得はどう? 今後は、データ分析に必要な専門スキルの習得にも力を入れていきます。たとえば、SQLは毎朝の学習を継続し、プログラムや統計学、機械学習については、講座終了後に専門スクールで集中的に学んでいく予定です。 フィードバックは大切? さらに、依頼された分析だけでなく積極的にデータ分析に取り組み、上司や同僚からのフィードバックを得ることで自らのスキル向上を図ります。日次、週次、月次のKPI目標の振り返りを行い、要因分析にはロジックツリーやMECEを用いてプロセスを分解し、より正確な分析を実践していきます。 情報共有は進んでる? また、分析に必要な情報収集のため、自組織や他部署のメンバーとの密なコミュニケーションを重ねながら、Webマーケティングやデータに関する知識の習得にも取り組みます。これらの活動を具体的なスケジューリングに落とし込み、着実に専門知識を身につけていきたいと考えています。

データ・アナリティクス入門

データ分析の目的を意識して成果を出そう

データ分析の目的は? 「①データ分析の目的を意識すること」と「②正しく比較するために条件を揃えること」の2つが特に印象に残りました。これまでの仕事では、目の前にあるデータを漠然と加工し、何か分かることがないかと試行錯誤しているだけだったと改めて感じました。 明確な分析の必要性を感じる 今後は「何のためにデータ分析するのか」「何が分かると嬉しいのか」を明確にした上で分析に取り組むつもりです。また、自分の悪い癖として「結論ありき」のデータ収集や分析を行う傾向があると自覚しました。具体例では、「●●●という結論を導くために都合の良いデータを探してくる」という方法を取っていましたが、それだと誤った意思決定に繋がる可能性があります。常に正しい条件でデータを比較することの重要性を強く感じました。 賃金制度の課題とは? ①新しい賃金制度の検討に活かしたい。自社の賃金制度に関する課題を明確にするためには、競合や労働市場との比較だけではなく、「現状の給与分布が自社の賃金制度の考え方に沿ったものか」、「自社の人事ポリシーに沿ったあるべき給与分布はどうあるべきかと現状との差異」を正確に比較したいです。 目的達成のためのツール選び ②新しいビジネスツールを導入する際の分析に活用したい。労働安全衛生関係の教育ツール導入を検討しているため、目的を明確にし、「目的を達成できるツール」を選定するための比較を実施していきます。 具体的に言うと、自社の賃金制度の課題を明確にするためには、競合他社や労働市場との年齢や等級ごとの給与比較は当然ですが、それ以外にも比較対象とする要素があるはずなので、漏れないように洗い出します。競合等と比較する際には条件をしっかり揃えることが大切です。また、ツール導入については「何のために導入するのか」「その目的を達成するために必要な要素は何か」「それぞれの要素の基準は何か」をしっかり考えて最適なツールを選びます。 継続的な評価が必要? ツール導入後の経時変化も確認し、継続使用を検討します。いずれの取り組みも、目的や比較対象がズレていないか、要素に漏れがないかを上司やチームのメンバーとよく議論しながら進めていきたいと考えています。

データ・アナリティクス入門

Whereが導く新たな学び

解決のステップは? 問題解決の4つのステップを意識することで、課題解決に向けた取り組みがより効率的になると感じました。今後は、最も重要なポイントである「Where」を意識して分析に着手していきたいと思います。業務においては、あるべき姿と現状とのギャップを、定量的な指標で示すことが大変有効だと印象に残りました。 総評はどう考える? 総評として、問題解決のステップを意識し、効率的なアプローチを追求する姿勢は素晴らしいと感じます。また、定量的な分析の重要性を理解している点も非常に大切だと思います。今後は、具体例を交えた検証により、さらに深い理解が得られるでしょう。 手法とデータは? さらに思考を深めるための問いとして、以下の点を考えてみてください。 ・問題の「Where」を意識する際、具体的にはどのような手法を用いる予定ですか? ・業務での定量的分析を強化するために、どのようなデータが必要だと考えますか? 今回学んだポイントを、実務に具体的にどのように応用するかもじっくり考えてみてほしいと思います。頑張ってください。 理想と現実は? また、「あるべき姿」と「現状」のギャップについては、①正しい状態に戻すための問題解決と、②ありたい姿に到達するための問題解決があると認識しました。たとえば、以下のようなケースが想定されます. ・売上販売目標の場合  → 100%達成に届かない状況と、120%達成を目指す状況がある ・製品シェアの内訳の場合  → シェア80%を目指す場合と、シェア100%を目指す場合がある ・KPI Activityの場合  → 会社の指標を順守する場合と、それを大きく上回る目標を設定する場合がある 比較で見極める? さらに、分析にあたっては「分析とは比較なり」という考え方も大切です。具体的には、社内の数字の良い組織や競合他社と比較することで、現状とあるべき姿を明確にすることが重要です. また、あるべき姿と現状は、定性的な情報だけでなく、定量的な情報としても示すことが重要です。定性情報を定量化するために、数値によるスコア化(たとえば0、1、3など)を統一した条件で設定する手法も有効だと感じました。

データ・アナリティクス入門

重要性を再確認しよう!データ分析の基本と新発見

今週の学びの重要点は? 今週の学習を通じて重要だと感じた点は以下の3つです。 まず、分析の目的を意識することの重要性です。現在の業務においても、データを加工したりダッシュボードを作成することに満足せず、あくまで何を導き出したいのか、何を証明したいのかといった初期の目的を常に意識するように努めています。この点を再確認し、今後も目的を忘れずに分析を進めることを誓います。 グラフ作成の新たな発見とは? 次に、グラフのX軸やY軸の配置が読み手に与える印象を大きく左右する点について、新しい発見がありました。これまではグラフの種類による印象の違いは認識していましたが、X軸やY軸の置き方にも注意を払う必要があることを実感しました。これからは、この点を意識してグラフを作成していきたいと思います。 比較分析の基本に戻る必要性 最後に、分析は比較であるという基本に立ち返ることです。業務では前年や前月など、期間軸による比較が多いですが、例えば国籍や予約経路など、他の軸での比較も意識することで多角的な分析が可能になります。これを踏まえ、実践に取り組んでいきたいと思います。 ホテル予約サイトでの活用法は? 現在、ホテル予約サイトのプラットフォーム運営に携わっており、登録施設の売上最大化のサポートをコンサルティングしています。日々の予約データを以下のように活用することで、より精度の高い提案ができると考えています。 - どの国籍からの予約が多いか、平均宿泊日数が長い国籍はどこか - 何月の予約が多いか - 売れている価格帯はどれか データ比較をどう進める? これらのデータを基に、最適な提案を施設に行いたいと考えています。この学びは現在の業務に直結する分野であるため、まずは実践を心がけます。そして、「比較」を意識して、これまで考えていなかった視点からの比較も試みたいと考えています。具体的には、自社内データや他社との比較だけでなく、政府の提供するデータとの比較も行ってみようと思います。 また、前期のナノ単科同様に他者への共有も積極的に行います。学びをチームメンバーに説明することで、より深い理解と正確な認識を確立できるため、この点も重視していきます。

データ・アナリティクス入門

検証と比較で広がる学び

分析の目的は何? 分析の本質は比較にあると実感しています。何のために分析を行うのか、もう一度立ち返り、プロセス、視点、アプローチを意識することが大切です。複数の仮説を立て、様々な切り口から問題にアプローチすることで、見落としがちな問題点も網羅することができると感じます。 データ分布はどうなって? 全体像を把握するには代表値の比較が有効ですが、同時にデータの分布がどのようになっているかもしっかりと確認する必要があります。抜け漏れがないか、条件反射に頼らずに注意深くチェックすることが肝心です。また、標準偏差の変動は、株のボラリティに似た感覚で捉えています。 検証の手順は? 仮説は何度も繰り返して検証すべきで、すぐに答えを出さず、切り口に抜け漏れがないかを再点検することが重要です。問題点を明確にするためにはデータを見える化することが効果的で、これによって次のアクションやステップを取りやすくなります。データの判断目的やその見せ方にも気を配る必要があると感じます。 打ち手の成果は? 特に、ある動画で打ち手の費用対効果について触れられていたことが印象的でした。これまで「どの打ち手を優先するか」が重要だとは考えていましたが、実際にその打ち手を実施した際のリターンまで考えるという視点は、私自身の経験上、一度も考えたことがありませんでした。ファイナンスの考え方であり、その入り口ともなる新たな発見に、深く感謝しています。 時間の使い方は? また、他の社員より明らかに時間を要している業務があると感じています。正直なところ、その業務が自分に向いていなかったり心理的に好ましくなかったために、時間がかかると言い訳をしていた自分がいました。しかし、他者との比較を通して、行動前の準備段階で何か問題があるのか、結論から逆算するなど、対策案の仮説やシミュレーションを実際に試している最中です。 改善策はどうする? 現状をしっかりと把握し、問題点を見つけるとともに、どのような状態にすべきかを工程を逆算しながら検証しています。苦手な業務の改善につなげるため、うまくいかなかった場合はさらなる仮説を立て、柔軟に対応していくつもりです。

データ・アナリティクス入門

振り返りに潜む解決のヒント

問題解決の始め方は? 問題を解決するためには、まず「何が問題か」を明確にし、「どこで」発生しているのかを特定します。その上で、原因を分析し、解決策を考えて実行するという4つのステップ(What、Where、Why、How)を意識することが大切です。 状況把握のコツは? また、状況を整理するためのツールとして、3C(顧客、競合、自社)や4P(製品、価格、販売場所、宣伝)を活用する方法があります。これらのツールを用いると、事業の強みや改善すべき点がより具体的に見えてきます。 仮説は何故必要? 問題の原因をつかむには、一つの仮説に絞るのではなく複数の仮説を立てることが有効です。異なる視点から仮説を構築し、その後に実際のデータを収集して検証することで、問題を多角的に理解し、正確な解決策に結びつけることができます。 データはどう取得? データ収集においては、信頼できる情報源から、偏りのない意見を得る工夫が求められます。誰に、どのように質問するかを工夫し、整理したデータをもとに検証を進めることで、反論を排除しながら正確な分析が可能となります。 相談対応はどうする? 実際の業務では、他部署から「業務がうまくいかない」という相談を受けることがあります。そうしたときは、まず問題の所在を整理し、どこでどんな問題が発生しているのか、またその原因を明らかにします。そして、仮説を立てた上でデータ収集と検証を行い、説得力のある解決策を提案できるように心がけています。 体制強化はどう考える? 日常の業務において、問題解決の4ステップを意識的に実践し、仮説を立ててデータに基づいた検証を行うことで、より効果的なサポート体制を構築できると実感しています。また、3Cや4Pなどのツールを定期的に活用し、背景や業界の状況を把握しておくことも、今後の課題解決に大いに役立つと考えています。 振り返りの秘訣は? 最後に、解決策を実施した後は、その結果を振り返り、どのステップや仮説が効果的だったのかを検討することが重要です。これにより、次回の対応に向けた改善点を明確にし、継続的なスキル向上につなげることができると思います。

アカウンティング入門

顧客価値を掘り起こす医療経営の秘訣

PL読み解きの重要性は? PLを読む際には、単に数字を確認するだけでなく、顧客価値を意識して読み解くことの重要性を学びました。顧客が何を価値と感じ、どのように満足しているかを理解することで、PLに現れる収益やコストの背景を深く捉えられるようになると感じました。さらに、顧客価値に基づく経営戦略を軸に、PLがその方針を反映しているか確認し、必要であれば経営の立て直しを図ることの重要性も学びました。数字を追うだけでなく、それが顧客や市場にどのように影響を与えているかを洞察する力の大切さを実感しました。 医療現場のPL分析方法は? 医療現場では、患者や地域社会にとっての「顧客価値」を軸に考えることが、医療サービスの質向上や経営改善に直結します。この視点を活かし、病院の損益計算書(PL)を分析する際、非財務的な指標、例えば患者満足度や地域貢献度を念頭に置きながら、収益やコストの構造を見直したいと考えています。新たな診療サービスの導入や地域連携の強化など、患者価値を高める取り組みを財務データと結びつけ、現場の改善や経営戦略の立案に活用したいです。 改善施策のモニタリング方法は? 具体的な取り組みとして、まず現場のニーズと顧客価値の明確化を図ります。患者満足度調査やアンケートを通じて、患者が求める価値やサービスの改善点を把握し、職員へのヒアリングを通じて、現場の課題と患者にとっての価値を共有します。次に、PLデータの分析基盤を構築し、医療サービスごとの収益とコストを分解・可視化する仕組みを整備します。 また、施策の有効性を評価するため、定期的に改善策が患者満足度や稼働率、収益にどう影響しているかをモニタリングします。さらに、顧客価値とPLを連動させる重要性を職員に教育し、データに基づく現場での行動を促進する場を設けます。成功事例を共有し、他の職員にも実践を促し、継続的改善とPDCAサイクルを回します。 成果の再確認と改善策の検討は? 最後に、定期的に患者満足度とPLのデータを見直し、効果が不十分な部分には新たな改善策を検討します。必要に応じて外部の専門家の意見や他病院の事例を参考にしながら、行動計画を更新します。

クリティカルシンキング入門

「データ分解術で見つけた新たな視点」

情報を分解する重要性は? 情報を分解することによって、情報の解像度が向上します。データを加工するときには、以下の点に注意すると良いです。 まず、与えられた表をそのまま見るのではなく、全体を把握するために自分で欄を増やす工夫をしましょう。さらに、絶対値だけでなく相対値も見ることが重要です(比率に注目する)。数字はグラフにできると、その情報の威力が増します。「眼に仕事をさせる」ことがポイントです。 データの区切り方で何が変わる? データをどのように区切るかによって、解釈が変わってきます。刻み幅によって、分布の見え方が変わるため、どのような分け方が良いかをいくつか試行錯誤する習慣を身につけることが大切です。どのくらいの刻み幅にすれば良いかだけでなく、どのように区切ると意味を持つかを仮説として考えることが重要です。また、分解の際には多様な切り口を考えてみることが必要です。ある切り口では特徴的な傾向が見えなくても、別の切り口では見えることがあるため、複数の切り口で分解してみることが有益です。 まずは「全体」を定義することが重要です。 セミナー結果の詳細分析法は? セミナーや研修の参加者アンケートの結果を分析する際には、表面的な結果だけではなく、"when"、"who"、"how"など、多くの切り口から分解して内訳をしっかり確認します。2つ目、3つ目の傾向がないか意識しながらデータ分析を行うことが求められます。 業務報告はどう改善すべき? 月次の業務報告作成の際には、集計したデータをグラフ化し、表の状態では見えなかった傾向がないかを確認するようにします。データをどこで区切るか、どのように切ると意味を持つ切り方になるかを仮説立てて試してみることが大切です。 今年度のセミナー内容を企画・提案する際には、過去数年分のテーマと参加者アンケート結果を比較して、どのようなテーマがどの属性の参加者に反応が良いのかを分析します。その結果をもとに、今年度の企画案を作成します。また、業務報告を作成する際には、これまで毎月固定の項目の傾向分析・報告だけを行っていましたが、次月以降は新たな切り口での分析を1つ以上追加して報告する予定です。

「意識 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right