データ・アナリティクス入門

実践!比較で開く分析の扉

分析本質はどう捉える? 「分析の本質は比較」というテーマから、これまで漠然と捉えていた「分析」が、実は「比較」を前提として成り立っていることを再認識しました。比較対象が存在しなければ、意味のある分析は行えないという考え方に気づかされました。 課題整理はできてる? 現状の課題として、収集したデータがそのままに放置され、分析に必要な比較対象が適切に選定されていない点、そして分析の目的が明確になっていない点が挙げられます。これらの課題を意識し、今後の業務改善に活かしていきたいと思います。 数値の変化はどうなってる? コミュニティ運営では、入会や退会の集計を実施していますが、リソースの問題から、十分な分析には至っていませんでした。しかし、年単位の集計により、昨年や一昨年と比較してどのような数値になっているのか、またその数値に影響している要因は何かといった点を把握できると実感しています。 改善策は何だろう? 今後は、分析の目的を明確にし、必要なデータ収集に努めるとともに、入会時および退会時のアンケート項目の見直しを実施します。そして、毎月の施策と入退会の関連性を紐付けることで、より実践的な分析を展開していきたいと考えています。

データ・アナリティクス入門

データ視点で学びの成果を実感

アウトプットの重要性は? 学んだことをアウトプットできる場として、最終課題やグループワークの課題に取り組むことができたのは、とても良かったです。講義を受ける前よりも、データを見る際に「何のために」「何を明確にするのか」「どのデータとの比較を行うのか」という視点を持てるようになりました。このような視点を持てるようになったことが、個々の学びが自分の成長に結びついていると感じています。 振り返りの重要性とは? しかし、全講義を通して何を学んだのかと問われた際に、すぐに言葉が出てこなかったのは振り返りの重要性を改めて実感させられました。研修や知識をインプットした後に、そのまま放っておくのではなく、自分が何を学んだのかを振り返る時間をきちんと取ることが大切だと感じました。 学びの定着に必要なことは? また、目的意識を持つことがインプットとアウトプットの質を向上させると感じました。迷った時こそ「何を目的にこの仕事をしているのか」に立ち返ることが大切です。そして、何を学んだのかを人に話したり、紙に書いたりして振り返りを行うようにすること、自分の言葉でインプットした内容をまとめ人に伝えて意見をもらうことが、学びの定着に繋がると実感しました。

データ・アナリティクス入門

実績分析で気づく新たな視点

グラフを使い分けるには? データの多さや少なさを確認したいときは縦棒グラフ、比較を行いたいときは横棒グラフ、割合を示したい場合は円グラフを使うのが効果的です。用途に応じてこれらのグラフを使い分けることが重要です。目的を明確にした上で分析を行い、最終的に作成する資料が社内外のステークホルダーに感謝されるようなものになると理想的です。 どのグラフが最適ですか? たとえば、担当先ごとの売上や営業所間のメンバーの実績達成率を比較する際には横棒グラフが適しており、担当先のマーケットシェアを示したいときには円グラフが便利です。会議での効果的なアウトプットを意識して、適切なグラフを作成していくことが求められます。また、縦軸と横軸に何を選ぶかによってアウトプットの見方が変わることがあるので、様々な試行を行いたいと思います。 実績分析に時間を割くべき? 毎朝、実績を見る際に、自分だけでなく営業所メンバーの実績もExcelで分析しています。従来のやり方に加えて、グラフ作成にも挑戦しています。縦軸と横軸を従来とは異なる項目にしてみるなど、工夫を凝らしています。この作業にはかなりの時間を要するため、毎日1時間は数字分析の時間を確保しています。

クリティカルシンキング入門

MECE実践!仮説検証で切り拓く発見

データ分析の意義は? データを分析する際には、元のデータをさらに加工できないかを常に考えながら進めることが大切だと実感しました。また、分析が進むにつれて様々な仮説が立てられるため、その仮説をどのように検証するかを考えるプロセスも重要だと感じています。 検証で何を得た? 仮説と検証を繰り返すことで、新たなインサイトを発見できることが分かりました。 MECEの活かし方は? また、データを分けるときには、MECEの考え方を取り入れることで、効率的なデータの分解と分析が可能になると学びました。今日からは、「モレなくダブりなく」の精神を意識したデータの分け方を実践していこうと思います。 報告で工夫する? 社内の業務データをまとめて報告する機会があった際には、これまでのフォーマットに従った報告だけでなく、自分から先んじてデータを加工し、新たな気づきを得る試みを行いたいと考えています。 全体像の捉え方は? 今後は、業務データを扱う際に、全体像を意識しながらMECEの視点を取り入れて課題に取り組むとともに、単一の切り口にとどまらず、層別の変数やプロセスごとに異なる切り口で全体を見渡す意識を持って取り組むようにしていきます。

データ・アナリティクス入門

平均だけじゃないデータの魅力

数字加工のコツは? データ分析のアプローチにおいて、「数字を加工するためのポイント」を学びました。これまで単純平均だけに頼っていた自分に対し、加重平均、幾何平均、中央値など、分析の目的に応じた代表値の捉え方があることを知り、大きな気づきとなりました。 散らばりの見方は? また、標準偏差によりデータの散らばりを見る方法についても、漠然としたイメージから、基本的な考え方や2SDルールの説明を受けることで、より明確に理解できるようになりました。 顧客単価の確認は? 現在、一定の条件下で顧客単価を分析しており、単純平均以外の視点やバラつきの観点からの分析に着目し、これまで手つかずだった部分の解明に取り組む予定です。その際、前回学んだ分析の目的を明確にし、仮説を立てながら検証する手法を実践したいと考えています。 実践方法はどう? 具体的には、以下の点を意識して進めます。まず、初回の学びに沿った手順を振り返りながら、地道に分析に取り組むこと。次に、仮説を立てる際には、数字をざっくりとビジュアル化して全体像を把握すること。そして、代表値や散らばりに焦点を当てた分析を行い、見やすく伝わりやすいグラフなどのビジュアル化にも努めます。

データ・アナリティクス入門

ロジックが導く理想の一歩

講義の4ステップとは? 今回の講義では、問題解決の基本となる「明確化、特定、分析、立案」の4ステップを学びました。現状とあるべき姿の違いを、数字で具体的に示すことの重要性も理解できました。また、分析手法としてロジックツリーや層別分解、変数分解、そして「もれなく、ダブりなく」というMECEの概念にも触れ、今後の実務での応用を意識するようになりました。 タブロー普及策は? タブローの導入にあたっては、社内での普及方法について考える必要があります。タブローは主に営業部門と管理部門で利用される予定ですが、現状では初期導入段階のため、タブローの知識やスキルを持つ人材が不足しています。そのため、どのように準備を進め、短期間で必要な教育を実施するかが課題となっています。 実務に生かすには? BI分析やデータ可視化の取り組みを進める中で、理解を深めるためには計画的な学習やスキルの向上が不可欠です。講義で学んだプロセスをもとに、現状とあるべき姿をどのように区分し、具体的な対策を立案するかのイメージが湧いてきたと感じています。しかし、仕事の現状と理想の状態を明確に区分する点については、まだ少し分かりにくいという実感もあります。

クリティカルシンキング入門

学びが深まるスライド作成の秘訣

スライドの見せ方は? 社内資料の作成では、スライドを作成する際のポイントに注意することが重要です。特に、どのようにデータを見せるかに工夫を凝らし、帯グラフ、円グラフ、折れ線グラフなど、適切な形式を選んで見やすく提示することが求められます。 構成配置の意味は? また、スライドにはタイトル、本文、グラフ、アイコンなどが関連性を持って配置されている必要があります。特に、キーとなるメッセージを明確に伝えるため、ピラミッドストラクチャーを用いると効果的です。この点は、前回の学びとも関連しています。 マニュアルはどう進める? さらに、マニュアルを作成する際も、ただ情報を羅列するのではなく、ポイントを押さえながら進めることに留意しましょう。資料やマニュアルがどのような会議で、誰に向けて作成されるのかを意識し、それに対して、受け手がどのような状況で何に困り、何を達成したいのかをイメージしながら情報を整理すると良いでしょう。 資料見直しの工夫は? 作成した資料は、色々な立場に立って見直し、どのように受け取られるかを考慮することが望ましいです。これにより、より効果的で受け入れられやすい資料に仕上げることができます。

戦略思考入門

選択と差別化の成功と失敗を学ぶ

どうして失敗を重視? 規模の経済や多角化について、成功例だけではなく失敗例も学びました。「なんとなくよさそう」という選択肢に飛びつかず、「うまくいかないケースはないか?」を意識して確認する必要があると感じました。 補足はどう工夫? 総合演習では、情報が足りない時にどのように補うかを考えながら取り組みました。日常生活でも、安易に選択してしまうことがあるのかもしれないと感じました。選択するかしないかを広い視野でとらえ、その背景を分析し、メリットとデメリットを正確に把握する必要があります。 どう差別化実現? 現在取り組んでいるペーパーレス推進の中では、「捨てる」ことと「他社との差別化」を両立する施策を意識しています。業界内の動向だけでなく、他業界での先行事例も注視しています。「なんとなくよさそう」で判断せず、定量的データを用いて根拠のある提案を行うよう努めています。 何を見極める? 定量的データを活用し、同業界だけでなく他業界の事例も広く集め、自社に活用できる部分がないかを検討しています。その際、自社の差別化につながるかどうかという視点を重視しています。また、ペーパーレス実現後の影響も考慮した施策を構築しています。

クリティカルシンキング入門

問いから始まる学びの軌跡

問いの重要性は? 「問い」から始めることの重要性を改めて感じました。まず、最初に問いを立て、その問いを共有することが大切だと理解しました。また、問いは立場や視点によって異なるため、誰にとっての問いなのか、何が求められているのかをしっかり見極めなければならないと実感しました。 記憶はどう保つ? また、一度学んだことは反復練習をしなければ忘れてしまうという教訓を得ました。意識的に時間を設けて、学んだ内容を繰り返し実践することで、実際の業務に効果的に生かすことができると思います。 どう企画に繋げる? 市場分析では、市場における問いを自分の立場を意識しながら考えることで、より具体的な課題の把握につながると感じました。一方、企画立案では、立てた問いをそのまま残しておくことで、企画のストーリーに筋が通り、納得性の高い企画が作成できると学びました。 練習はどう変わる? さらに、「問い」から始める練習を通じて、自分の思考の癖を自覚し、客観的な視点を持つことの大切さも理解できました。データを共有する際には適切に視覚化し、伝えやすいレイアウトを心がけること、そして現状の課題を的確に見極めながら進める姿勢が必要であると感じました。

データ・アナリティクス入門

分析で見える!自分の可能性を探る旅

分析目的をどう定める? まず、分析を行うためには、その目的を明確にすることが大切です。分析の核心は、物事を比較することにあります。適切な比較対象を選ぶ際には、「apple to apple」を意識し、時には目に見えないデータとも比較することが求められます。仮説を立てた上で、分析を進めることが重要です。また、分析結果を可視化する際には、その目的を常に念頭に置くことが求められます。 新しい業務の分析に必要な視点は? 新しい業務に取り組む際には、市場規模や競合他社、収支計画など、多岐にわたるデータを使用し、取り組む価値があるかどうかを分析します。コンサルティングなどの導入時においては、従来の定性的な説明に加え、コスト、業務効率化、収益への影響についてデータに基づく分析を行い、より説得力のある説明が求められます。 仕事の本質をどう理解する? 次に、「自分が何をしたいのか」を明確にし、自身の仕事の本質を正確に理解します。その上で、なぜ分析が必要であるのかを整理します。分析を始める前に仮説を立て、その仮説を検証するために必要なデータを収集します。最終的には、分析結果を適切に可視化し、周囲を納得させられるようにすることが重要です。

データ・アナリティクス入門

標準偏差が拓く学びの新視点

データの全体像はどう捉える? 標準偏差を活用することで、データのばらつきを正確に把握でき、分析の全体像を掴むきっかけとなりました。平均値だけで物事を判断しないためにも、中央値など他の指標を併せて見ることの大切さを実感しています。 グラフで視覚的に理解できる? また、ヒストグラムは各グループの構成比を視覚的に捉えるのに非常に役立ちます。特に、世代などX軸の単位が明確なものの場合、グラフ化することで理解しやすくなると感じました。売上実績の分析など、データのばらつきを確認することで、より正確な施策の検討が可能になると考えています。 苦手意識は克服できる? 個人的には、以前は標準偏差に対して苦手意識がありましたが、全体のばらつきをとらえる重要な指標として積極的に活用する決意を新たにしました。さらに、ヒストグラムのように一目で内容を把握できるグラフ作成を通じて、プレゼンテーション時の相手の理解促進や、意思決定のスピード向上に貢献したいと思います。 分析の認識共有はどう進む? 今後の日々の分析においては、標準偏差やその他の代表値を取り入れ、データ全体の認識を共有することで、正確な判断に結びつけていきたいと考えています。

クリティカルシンキング入門

データ分析で見つけた新たな視点

データ加工とMECEは? データの加工や分け方、そしてフレームワークについて学びました。提示された情報をただ受け入れるのではなく、その背後に隠された情報を見抜く重要性を認識しました。特にMECEの活用方法について考える機会がありましたが、必ずしもMECEにこだわる必要があるのかという疑問も感じました。MECEが手段であり目的でないことを意識することが大切です。 戦略調査の目的は? マーケティング戦略の策定では、現在のサイトへの流入経路や登録経路を様々な角度から調査しました。特に、業歴が長い会社の場合、リピーター率が高いのではないかという仮説を立てて調査し、既存顧客からのフィードバックにどのような特徴があるのかも分析しました。また、成果を上げた新人の要素を細分化して理解を深めました。 連携の秘訣を探る? 最初に関係各所と連携して分析プロジェクトを立ち上げました。プロジェクトに興味や共感を持った人々から順に説明の時間を頂いてミーティングを行い、データ分析によってどのような示唆が得られるかについて話し合いました。その過程でスモールウィンを設定し、うまくいった内容を共有してより多くの人々を巻き込んで進展を図りました。

「意識 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right