クリティカルシンキング入門

予算作成を成功させるMECE分析のコツ

分析と成功の考え方は? 「分かる」は「分ける」と同じ意味だということが重要です。分析の結果、顕著な傾向が見られない場合でも、それは失敗ではなく、むしろ傾向がないことが確認できた成功です。特に、MECE(漏れなくダブりなく)を意識し、分析の切り口を明確にすることが大切です。 来期に向けた予算分析法 来期の予算作成に向けては、今期のデータをMECEを活用して分析する予定です。具体的には、四半期ごとの傾向、各勘定項目ごとの傾向、各支店ごと、固定費用と変動費用、そして担当者ごとに分けて分析します。また、予算作成の時期を待たず、今から準備を進めることも可能だと感じました。 代替案とスムーズな承認 現状を追う目線とは異なる視点でデータを見て、必要なことを考えます。どのような資料を作成すれば予算承認が通りやすく、承認者が納得しやすいかを考慮します。さらに、他の国や会社全体の状況を把握し、予算取得のために想定される壁があるかどうかを調査し、事前対策やプランBを考えておきます。承認後のフローも整理し、次のアクションにスムーズにつなげられるよう準備を進めます。

クリティカルシンキング入門

データ活用で見えた新たな視点と工夫

データ加工法をどう活用する? データの加工法について学びました。与えられたデータをそのまま使うのではなく、自分で項目を追加することを意識することが重要です。例えば、絶対値や相対値(比率)を追加することで、データにひと手間加えることができます。数字をグラフにすることも非常に効果的です。また、データを分解する際には、複数の切り口で考えることで異なる見解が得られることがあります。 人件費分析で何を検証する? 現在、人件費分析を行っているため、今回学んだ切り口や加工法を実践しています。具体的には、時間外労働時間の妥当性を検証するために、データを性別、既婚未婚、年齢(若手かベテランか)、部門ごとに切り分けて情報を抽出し、グラフで可視化します。 PowerBIでどう可視化する? 人事データを入手したら、比率や不足している情報を追加し、勤怠情報としての表を作成します。このデータを可視化するためにPowerBIを使用し、グラフ化します。さらに、散布図を用いて時間外労働時間と相関のある事柄を確認し、そのデータを参考に実際に関連性があるかどうかを調査します。

クリティカルシンキング入門

自身のクセを知る:客観視の挑戦

考えのクセ、気付いてる? 自分には考え方のクセがあることを改めて実感しました。具体的には、客観的な視点よりも主観的な考え方に偏ったり、データや数値よりも自分の経験を優先して考えてしまうことに気づくことができました。このクセを直すためには、まず自分自身で常に意識することが大切ですが、それだけでなく、人とのディスカッションの機会を多く作って練習していくことが必要だと感じています。 アンケートはどう読む? 特に顧客アンケートの分析時には、考え方のクセが出てしまわないか注意が必要です。アンケートの自由記述欄では感情移入しやすく、主観的な判断に陥ることがありますが、そうならないように感情に流されず、アンケートから客観的なインサイトを得られるよう分析したいと考えています。 意見交換は必要? まずは自分で現在の課題を意識しながらアンケートを分析します。その後、他人に分析結果を説明して、論理に飛躍がないか、見落としていることがないか確認してもらう機会を設けたいと思います。今後は、多くの人と意見交換を行い、視点の幅を広げることを意識していきたいです。

データ・アナリティクス入門

平均再発見!生データが語る学び

平均って何だろう? 基本的な代表値である平均とばらつきを再確認しました。また、関連するフレームワークの動画を通じて、単純平均、加重平均、そして幾何平均といった具体的な計算方法が存在することを学び、以前は知っていた幾何平均についても、計算方法や名称を含めて改めて理解することができました。 中央値はなぜ大切? 技術職として、日常的に平均値や標準偏差を用いたばらつきの分析を行っています。中央値については、その定義や目的を理解しているものの、実際の業務では頻繁に使用することはありません。しかし、中央値が持つ目的を意識し、グラフや図を用いて全体の分布や外れ値の有無を確認することで、解析の正確性を担保していると感じています。 外れ値の確認方法は? また、普段からデータに触れる中で、改めて図での表示を行い、データの前処理における外れ値の存在を意識することの重要性を再認識しました。どの業務においても、正しい目的意識を持つことが根幹であると実感しており、今回学んだ単純平均、加重平均、幾何平均を活用して、目的に即した正確な解析を進めていきたいと考えています。

データ・アナリティクス入門

柔軟な仮説が未来を拓く

初期仮説の危険性は? 仮説は初めから決めつけず、幅広い視点で持つことが大切です。あらかじめ仮説を立て、それに基づいて検証するため、もし初期の仮説に誤りがあれば、その後の工程にも大きな影響が出る可能性があります。 計画的データ収集は? また、仮説を検証する際には、必要なデータを計画的に収集することが求められます。必ずしも全ての情報が揃っているとは限らないため、誰にどのように情報を収集するか、目的に沿って進める必要があります。 売上データで何発見? 日々の業務で売上データを見る中で、発生した事象に対してまずは幅広く仮説を出すことが有効だと感じました。これまで漠然とした感覚で仮説の検証に取り組んでいたため、今後はより意識的に取り組むことが必要だと思います。 周囲の意見は頼も? 仮説を立てる際は、自分一人で考えるのではなく、周囲のメンバーからの意見も取り入れ、網羅性を高めるよう努めます。過去の経験や先入観をなるべく排除し、フラットな視点で物事を俯瞰することを心がけるとともに、仮説検証の目的を踏まえて最適なデータ収集方法を選択していきます。

データ・アナリティクス入門

実践で磨く仮説思考の秘訣

正しい仮説はどう作る? 仮説を正しく構築することで、検証マインドが高まり、ビジネスの精度向上につながります。そのため、適切な仮説を立てるスキルの習得が求められます。また、「what」「where」「why」「how」といった視点を意識することで、課題の把握や解決方法の糸口を見つけることが可能です。 販売分析の秘訣は? 日々の販売分析においても、仮説思考を取り入れるよう努めています。現場担当者が実務の中で肌感覚で感じている課題について、定量的・定性的な両面から評価し、チームとして合意のもとで進めることが重要です。 仮説は独立すべきか? また、仮説は一つに絞らず、対策や重要性、影響力を十分に考慮した上で、業務への反映が必要です。複数の可能性を見極めながら、最適な対策を検討していく姿勢が大切です。 改善プロセスは? 具体的なプロセスとしては、まず現場担当者が感じている課題を確認し、併せて実績数値などのデータを基に問題点を洗い出します。その上で、いくつかの仮説を立て、裏付けとなるデータや対策案を検討しながらプロセスの改善を進めています。

データ・アナリティクス入門

変化を捉え、採用戦略の新しい視点を獲得

「分析は比較なり」とは? 「分析は比較なり」という言葉が強く印象に残りました。これまで、分析を行う際にはひとつの情報やデータから何かを導き出そうとすることに注力しがちでした。しかし、適切な対象と比較を行うことが重要であることに改めて気づかされました。データ加工が目的化し、肝心な分析がおろそかにならないよう、「何のための分析なのか」を明確にすることが大切だと学びました。 採用戦略にデータ分析をどう活かす? また、この知見は顧客企業の採用戦略を考える際にも活用できると感じました。顧客が抱える採用課題を解決するためには、現状データ(求職者の動向や志向性など)をもとにボトルネックを分析する必要があります。目標と現状の差を正確に把握するために、今回の学びを活かしてデータ分析を行いたいです。 自分なりの仮説が鍵? さらに、顧客の課題に対して自分なりの仮説を立てること、分析の目的を明確にすることを意識していきたいです。採用市場は日々変化していますが、その変化を「仕方がないこと」と捉えるのではなく、変化の原因や市場の動きを常に考えていくことが重要です。

データ・アナリティクス入門

小さな疑問から大きな発見へ

何故課題意識は必要? 分析の目的や課題意識を明確にすることで、日常の業務だけでなく、普段目にする分析データについても「なぜ?」と考える習慣が身につきました。例えば、ニュース記事で医師不足が取り上げられる場合、その背後にある分析の意図や解決すべき課題を自分なりに考察するきっかけとなりました。 施策評価はどう? また、業務で複数の施策を企画・実行する中で、効果を評価するための分析が重要だと感じています。中長期的な戦略の実行に際し、連続性のある施策を実施するためにも、小さな施策のブラッシュアップを繰り返す必要があると考えています。たとえば、アプリへのログインプロセスを細かく分解し、特に初回ログイン率の向上に向けた分析を進めています。 情報取得は万全? さらに、戦略立案の段階から必要な情報やデータが適切に取得できているかを精査し、取得できていないデータにはタグ付けなどの対応を実施して、常に分析が可能な状態を作り上げています。同じ条件で定期的にログの確認やレポート作成を行う仕組みを整備することで、継続的な定点観測が可能になりました。

クリティカルシンキング入門

データが語る組織の新しい一面

データ加工で新たな発見をするには? データを加工することで、その特徴を理解できるようになります。最初は特徴がないように見えるデータでも、分解して可視化することで新たな特徴を発見できます。分解する際には、MECEを意識して多くの観点からアプローチすることが重要です。これにより、データの特徴をより深く理解することが可能になります。 組織の稼働状況をどう可視化する? 私は組織の稼働状況や勤怠状況を可視化する業務をよく行っています。しかし、データの切り口を考える際には、目の前の情報だけに頼ってしまうことが多いです。今回の学習を通じて、切り口を言語化し、応用するための新しい視点を得ることができました。 データ分析に重要な視点は何? データを分解する際には、When、Who、Howを意識して、多くの切り口をまず検討することが重要だと感じました。組織メンバーの業務の偏りを分析する際、これまでは組織毎や案件毎といった切り口で見ることが多かったですが、今後は役割ごと、入社年次ごと、グレードごとなど様々な切り口も加えて分析を行ってみようと考えています。

戦略思考入門

最短距離で目指す戦略術とは

独自性はなぜ必要? ゴールに向かって最短距離で到達するためには、何をやるか、何をやらないかを選択し、他の人が真似しにくい独自性を持つことが重要であると再認識しました。また、戦略には計画的戦略と創発的な戦略があるという新たな視点も得ることができました。今後は、これらの理解を自分の言葉で他者に伝えられるようになりたいです。 戦略策定の鍵は何? 自部署の下期の戦略策定に関しては、まず上期の状況を分析し、継続することとやめることを選択することから始めたいと思います。各項目ごとにデータを比較し、どこに要因があるのか、なぜそうなったのかを考察します。その後、目的達成のための他の選択肢やルートも検討し、なぜそれを選んだのかをしっかりと説明できるようにしたいです。 本質はどう見極める? また、思考を深めるためには、考えを言語化し、なぜそう思ったのか、それを思う根拠を明確にすることが大切だと考えています。その上で、本当にその選択肢が必要かどうかを再度検討していく習慣をつけたいです。施策から入ってしまう自分の癖を意識し、今後改善していきたいと思います。

データ・アナリティクス入門

データ分析で成果を上げるコツは?

要因分析を効果的に進めるには? 要因分析の際には、プロセスを細かく分解して考えることが重要です。解決策を選ぶ際には、判断基準を設けることが必要で、例えばコストやスピードを基準に評価を行うと良いでしょう。 A/Bテストの活用法とは? 方法の効果を確かめる際には、A/Bテストという手法が有用です。A/Bテストでは、可能な限り条件を揃えて比較実験を行うことが大切です。要因分析時には、できるだけ細分化を行うことが求められます。すべての状況がわからない中でも、仮説を立てて細分化を試みると良いでしょう。 解決策選びの優先順位はどう決める? 解決策の選択においては、判断基準や優先順位を整理することが重要です。効率が良い方法やスピードを基準として評価することが望ましいです。報告資料を作成する際は、自分の中でステップを細分化して理解し、その上で優先順位を付けて表現することが大切です。 条件を揃えるポイントは? 判断基準は常に上司と擦り合わせながら進めるべきです。また、比較を行う際は、可能な限り条件を揃えることを意識すると良い結果が得られます。

データ・アナリティクス入門

データ分析ライブ授業で得た新たな視点と刺激

データ分析の全体像を学ぶ WEEK6までは「what→where→why→how」のステップを各フェーズごとに学んできましたが、ライブ授業において総復習として、一連のデータ分析を行いました。各フェーズで重要な点を再確認することができ、また受講者の考えも伺うことができたため、非常に刺激を受けました。フレームワークの適用場所やグラフの選定についても分かりやすく解説いただき、実際の活用イメージがつかめました。 例題分析で新たな視点を得るには? 今回のライブ授業では、例題のように属性ごとに分けて分析する場面もありました。「〇〇円以上買ったシニア」などといった二つの条件での比較は行っていませんでしたが、新たな切り口で分析できそうだと感じました。 経験を活かせる次のステップとは? 今後は社内のデータアナリスト研修に参加し、アウトプットに注力していきたいと考えています。ただやみくもに分析するのではなく、ストーリーを立てて分析することを意識します。分析力を高め、数値やフレームワーク、表現するグラフを適切に選べるよう、自己啓発に努めていきたいです。

「意識 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right