クリティカルシンキング入門

データ分析で見える世界が広がる!

データ分析の最初の一歩は? これまでデータ分析を行う際、どこから手を付けてよいかわからず迷っている時間が長かったのですが、今後は「まずは分解して傾向を探ってみる」「何も見えなくても失敗ではない!」という姿勢でアグレッシブに取り組んでまいります。 情報共有で意識すべきこと 施策立案前の仮説構築、施策の効果検証、上司/同僚/取引先との情報共有や報告など、全体像を漏れなく把握し問題点を特定、改善策を検討し、データ検証し、関係者へ共有/報告するすべてのフェーズにおいて、今週の学習が生かせると感じました。MECE(モレなくダブりなく)は、マーケティングやPDCA改善に欠かせない思考であるため、常に留意して業務に取り組んでまいります。 可視化がデータ分析の鍵? データ分析においては、頭の中で考えるのではなく、まずは可視化できるもので状況を整理することが重要です。頭の中だけで整理したものでは抜け漏れが発生しやすいため、他者と共有する際のツールとしても活用できます。また、切り口に迷うよりもまずは分解をしてみて傾向を探ることが大切です。トライアンドエラーを通じて、分析方法の傾向を掴むことができます。 コミュニケーションで大切なことは? コミュニケーションにおいては、情報共有や報告の際に「モレなくダブりなく」伝えられているかを意識し、データ共有においても相手が理解しやすい加工を心掛けます。

クリティカルシンキング入門

視点・視座・視野を活かして自己成長

問いの重要性とは? 今回の講座を通して学んだことは、「問いの重要性」である。問いを通じて的確なイシューを設定すること、そのためには3つの視を意識して物事をとらえることが重要だ。イシューに対する解決方法を見つけるために、様々な切り口からデータを分解する。そして、それを他者に伝えるために文章の書き方や視覚化を意識し、資料化する必要がある。 同僚に伝えたい大切なこと 私が同僚や友人に伝えたいことは以下の3点である。第一に、3つの視(視点、視座、視野)を持つこと。第二に、自分の思考にはクセがあることを自覚すること。第三に、問いの重要性(問いから始める、問いを残す、問いを共有する)を理解することだ。 判断する際の意識 これからは、今まで以上に「判断」や「かじ取り」をしなければいけない場面が増えてくるので、今回の講座で学んだことを活かすことができると考えている。具体的な場面を想定すると、他部署から移管される業務を受けるかどうか判断を求められる場面において、自部署や自身の視点や視野で判断するのではなく、3つの「視」を意識して判断を行うことが見込まれる。 経験だけに頼らない判断 経験だけで判断するのではなく、3つの「視」を意識して問う。そして、その問いをチームに共有する。そして、適切なイシューを明確にしてから判断・実行を行う。イシュー設定後は、都度問いに立ち返ることを忘れずに物事を進めていく。

データ・アナリティクス入門

分析の魔法: 自立したアプローチへの道

分析の目的は何を考えるべきか? 分析に取り組む際には、最初に目的の確認と仮説を立てることが重要です。適切に比較するためには、比較項目以外の条件を統一することで、意思決定がしやすくなります。また、分析は要素に分解して考えると良いでしょう。具体的に比較する内容を明確にし、より良い意思決定を支援します。 自立した分析をどう支援する? 私は分析チームのマネジメントを担当しており、各部門の分析支援において主に分析計画の確認と承認を行っています。分析の依頼を受けるにあたって、依頼内容をそのまま受け入れるのではなく、各部門が自立して分析を行えるようサポートすることが求められます。また、分析実務では、計画通りに進められているか、目的に沿って比較が明確に行われているかを確認し、より良い表現を習得したいと考えています。この経験を、今後の分析計画や実務に活かしていきたいと思います。 どのように分析計画を進めるべき? 分析計画では、依頼内容をそのまま受けるのではなく、分析の目的をしっかりと確認し、要素に分解して比較項目を定めます。何を明らかにすべきか仮説を立て、データの収集、加工、評価を行います。さらに、比較項目以外の条件統一も意識します。また、目的を確認せずに分析実務に入らないよう留意します。分析実務では、目的に沿って明確な比較ができているか、また、読者を考慮したグラフなどの表現を適切に行うよう心がけます。

クリティカルシンキング入門

学びを自分の成長に活かすコツ

グラフの選び方は? グラフを使用する際は、データの特性に応じて適切な種類を選ぶことが重要です。縦の棒グラフは時系列データに向いており、折れ線グラフは時系列の変化を示すのに適しています。一方、横の棒グラフは要素の比較に適しています。 デザインはどうする? 見せ方を工夫するためには、フォントや色、アイコンの選択が重要です。これらのデザイン要素は効果的に使うことで、メッセージを明確に伝える手助けになりますが、同時にノイズにならないように注意する必要があります。 図表の順序は? スライドや資料を作成する際は、図表の順序が伝えたい内容に即しているか確認することが大切です。また、文章を書く際は、アイキャッチを使用して、読者が一目で内容を理解できるように工夫することが求められます。 資料とグラフは? 特に教育資料や注意喚起のメール、あるいは会議資料においては、メインのメッセージと図の整合性を確保すること、適切なグラフを使うこと、フォントや色の選択が適切であることを意識することが必要です。資料作成の際は、伝えたいメッセージを最初に明確にし、それを伝えるための最適な手段を考慮することが重要です。 メールの体裁は? 日々のメール作成時には、タイトルや文書の体裁に注意を払い、アイキャッチを活用し続けましょう。イベント案内メールでも、相手の注意を引くためにアイキャッチを用いることが効果的です。

データ・アナリティクス入門

データ分析力で未来を切り拓く

比較で何を探る? 「分析とは比較なり」という言葉が示すように、分析を行う際には、条件を整えて比較し仮説を立てることが重要です。この手法は、日常的にデータを扱う作業の中で非常に役立っています。例えば、全国推奨品になった製品のシェアが推奨される前後でどの程度伸びているのか、値下げ要求に応じた場合に売上がコストダウンのインパクト以上に増加したかどうかなどの質問です。 目的と条件はどう? 分析を始める前に、分析の目的とデータの条件がしっかりと整っているかを確認します。目的がはっきりしていなければ、分析結果は曖昧になり、有益ではなくなってしまいます。また、「生存者バイアス」という思考に陥らないように、成功体験だけでなく失敗からも学ぶ意識を持ち続けたいと思います。たとえば、競合との製品コンペに勝つためには過去の成功事例から学ぶだけでなく、敗北したケースの反省点を検討し、どこが競合よりも劣っていたのかを追求していくことが重要です。 データの見せ方は? さらに、データの見せ方も大切です。数字やパーセンテージで示すべきか、どのようなグラフを使用するかを考え、視覚的に訴える効果的な方法を選択することが求められます。こうした分析の技法や思考法は、データを扱う日々の作業の中で重要な役割を果たします。ファクトに基づいた正確な分析結果を出し、それを適切に伝えられるように努めていきたいと思います。

データ・アナリティクス入門

仮説思考で課題を究める実践術

フレームワークは何に役立つの? フレームワークの使いどころについて、3Cや4Pといったものは聞いたことがあっても、実際にいざというときに活用できるかどうかが重要だと感じました。今回の実習では、仮説を立てる際に有効に使えると実感できたため、今後すぐに引き出せるように知識整理ツールで整理しておきたいと思います。今後触れる新たなフレームワークも同様に蓄積していくつもりです。 仮説思考で未来は変わる? また、仮説を考えること自体に意義があるという新たな視点も得られました。これまでは、漠然と考えるべき時に考えるという認識でしたが、仮説思考を業務に取り入れることで、課題に対するアプローチがより具体的かつ効率的になると感じています。今後は、積極的にこの考え方を意識して、業務改善に役立てていきたいと思います。 課題解決のヒントは? 部署や会社内に存在する課題を、フレームワークを活用して仮説を立てることで、本質的な問題点の抽出や、課題解決に向けた具体的な行動への落とし込みが可能になると考えます。漠然と感じる課題を仮説によって明確化し、実際の状況把握やデータ収集を通じて、もっともらしい原因に絞り込むことが大切です。そして、その原因を排除するための具体的な行動計画へと繋げ、もし課題が解決しなかった場合には、新たな仮説を立て行動に移すというプロセスを繰り返すことで、問題解決へと導くことができるでしょう。

データ・アナリティクス入門

全体を捉える問題解決のヒント

プロセスはどう見る? 問題解決のプロセスは曖昧な実施ではなく、明確に意識しながら進めていく必要があると感じています。ありたい姿と現状のギャップを把握し、単に発生した問題のみを解決するのではなく、全体を俯瞰して問題を特定することが重要だと思います。 何が問題の核心? 【What】:まず、ありたい姿と現状のギャップを正確に捉えること。加えて、全体の中から問題を特定し、対処療法に終始しないよう意識することが求められます。 【Why】:再発防止を見据えた要因分析が十分に行われ、単に問題の裏返しになった解決策に留まっていないかを確認することが肝心です。 【How】:グループメンバー全員がこのプロセスを意識し、行動に移せるかどうかも大切なポイントです。 会議の進めはどう? また、社内会議で問題の共有を行う際には、現在どのプロセスのステータスにあるのかを明確に意識し、視覚化した議論ができるようファシリテーションを心がけたいと考えています。オンライン会議など参加者の理解度が不明な状況では、イメージしやすい議論の進め方が一層重要になります。 データ活用の秘訣は? さらに、定量分析の書籍を通じて学んだ知識を復習し、データ分析における具体的な分析式などの例を自分の引き出しに加えたいと思います。その知識を業務資料に活用することで、社内のデータアナリティクス推進にも貢献したいと考えています。

データ・アナリティクス入門

仮説が拓くわたしの挑戦記

仮説の基本は何? 仮説とは、ある論点に対して一時的な答えを示すものであり、結論の仮説や問題解決の仮説など、さまざまな形で用いられます。この仮説を立てることで、検証マインドや関心・問題意識が向上し、行動のスピードや精度も高まるという効用があります。 データで示す理由は? また、仮説はそれ自体の正しさをデータで示す必要があり、その方法が非常に重要となります。データにより正しいことが証明されるとともに、他の説が否定される仕組みが求められます。良い仮説を構築するには、フレームワークの活用も有効であり、フィールドワークやエスノグラフィーといった手法が、質の高い仮説作成に寄与するという意見もあります。 仮説思考はどう役立つ? さらに、仮説思考は課題や目標の検討にも役立ちます。次年度の事業目標や事業拡大のために、自分なりの課題設定を行う際、また顧客ニーズの変化や新市場を捉える際に、仮説を立ててアイデアを具体化することが求められます。 来年度の目標設定はどう? 来年度の目標設定においては、売上などの事業指標だけでなく、競合との比較や自社への影響を示す独自のインデックスを仮説として設定することが推奨されます。その仮説がどのような状態になれば「影響がある」と判断できるのか、ほかの指数と照らし合わせながら検証し、実際にデータを収集して売上や実感との整合性を確かめることが大切だと感じました。

データ・アナリティクス入門

ギャップを明らかにする学びの道しるべ

現状はどう認識? 課題解決のためのデータ分析を行う際は、まず「what」「where」「when」「how」の観点で現状とあるべき姿の違い、すなわちギャップを明確にすることが大切です。特に「what」では、現状と理想との間にどのようなずれがあるかを捉え、その認識を関係者間で事前にすり合わせておくと、混乱なく分析を進めることができます。 手法はどう整理? 次に、ロジックツリーやMECEといった手法を活用することで、要素を段階的に整理し、状況を階層や変数別に切り分けることが可能です。実際の業務においても、初めて触れるデータに関して上長とのギャップ認識のずれから分析をやり直すケースがあったため、事前の共有が重要だと感じています。 結果はどう活かす? また、分析結果をもとに報告書や提言を作成する際は、その場しのぎの発想に頼らず、体系的にロジックツリーを活用して現実的な対策を検討すべきです。社員の意識調査のアンケートなどでは、まず「what」「where」「when」「how」に関する仮説を立て、その上で使用項目の選定とデータ分析に入るプロセスが理想的です。 対策はどのように? さらに、社内教育後の報告書で今後の取り組みを提案する際には、すぐに実行できる対策と時間を要する対策に分類し、複数の段階に分けて具体的な打ち手を検討することで、実現可能な内容を選定することが求められます。

データ・アナリティクス入門

平均値だけじゃない!全体を読む力

全体像はどう理解? データ分析において、従来は個々の指標の数値に注目していましたが、全体像を俯瞰する視点の重要性に気付かされました。ミクロな比較だけでなく、マクロな観点からデータ全体の分布に目を向けることで、より精度の高い理解が得られると感じています。 分布の意義はどう? 単に平均値だけに頼るのではなく、各指標のばらつきや分布の状況を把握することが、好調な要因や低調な要因を見極める上で大いに役立ちます。利用者の属性ごとにどのような傾向があるのかを明確に掴むためには、データ全体を広い視野で捉える必要があると実感しました。 層ごとの違いは何? たとえば、ある教育機関の利用者分析では、一部の層でばらつきが大きく見られる一方、他の層では比較的安定した数値が示されていました。こうした違いは、全体のデータを俯瞰することで初めて正しく理解できると考えます。 ツール選びはどうする? 私自身は、常に分布と俯瞰的な視点を忘れないよう、日々の学習の中で意識しています。平均値だけでなく、各種指標の分布を把握するためのツール構築にも取り組み、より具体的かつ実践的な分析に努めています。 仲間とどう共有する? また、周囲の仲間にも、平均値一辺倒にならず、データ全体の傾向を把握する大切さを伝えるよう心がけています。この学びを通じ、より深い洞察と分析力の向上を目指していきたいと考えています。

戦略思考入門

視野を広げる戦略的思考のススメ

意見対立の要因は? 方針を定め、戦略を決める際に、各事業の意見や目的が異なるため、立場上の意見対立が生じることはよくあると感じました。実務に追われるあまり視野が狭くなることについても、自分自身にも覚えがあり、特に印象に残りました。適切な戦略を立てるには、定量的なデータと根拠をもとに各方面の意見を参考にすることが重要だと思います。また、思考だけで整理しようとすると混乱や抜け漏れが起きることが多いため、フレームワークを活用して論理的に組み立てることが必要です。 戦略の実態は? 現在、自分は戦略を考える立場にはいませんが、「自分の部署で取り組んでいる業務が会社にどのような影響を与えるのか」を常に意識しながら業務を進めていきたいと思います。上層部からの戦略をただ受け入れるのではなく、その戦略がどのような意見や現状をもとに立案されたのかを自分なりに分析し、「自分ならどうするか」を考えながら取り組んでいきたいです。 フレームの壁を感じる? フレームワークを実際に使用したことがないため、概要は理解できても実務に生かせるか不安を感じています。そこで実務でのフレームワークの使用頻度を増やし、視野を広げる試みをしたいです。施策を立案する機会が多いため、KGIやKPI達成のために「なぜそれをやるべきなのか」をフレームワークで整理し、納得してもらえる提案ができるようになりたいと考えています。

データ・アナリティクス入門

ギャップに挑む学びの一歩

問題の本質をどう捉える? 問題解決プロセスについて学んだ内容は、まず「ありたい姿」と現状を比較し、そこに存在するギャップに着目する点から始まります。その上で、問題を構成する要素に分解し、ロジックツリーを用いながら要素間の関係を整理していく方法を学びました。ここでは、MECEの原則を意識しながら、WHAT、WHERE、WHY、HOWといった各視点で問題を詳細に捉えていくプロセスが重要です。特に、どこに問題が潜んでいるか(WHERE)の特定が解決への大きな手がかりとなります。 広告関連の要因は? たとえば、広告効果を測るデータで前回のCPと比較し、数値に大きな乖離が見られる場合、このプロセスは有効に働きます。その際には、広告以外の宣伝活動があったか、テレビで取り上げられたか、他社が類似のCMを始めたか、または在庫の問題がなかったかなど、さまざまな要因を洗い出して、どうすれば問題が解決できるかを検討することが求められます。 部門へ依頼する理由は? 現状では、業務スコープの中でデータが正しく取り込まれ、出力される段階で分析が終了してしまっていることが多く、結果としてその分析作業は別の部門に依頼しているケースが見受けられます。今後は、アナリストとしての視点を強化し、データを直接営業チームに提供できるよう、問題解決プロセス全体に対する理解と取り組みをさらに深めていきたいと感じました。

「意識 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right