データ・アナリティクス入門

仮説と比較で未来を拓く

仮説の組み立て方は? 仮説を立てるための考え方について、業務に取り入れていきたい点をまとめました。まず、「分析とは比較」であるという点を意識し、比較対象を設けることで、他者にも分かりやすい分析を目指します。また、問題解決の仮説を立てる際には、What(問題は何か)、Where(どこに問題があるか)、Why(なぜ問題が発生するか)、How(どのように対処すべきか)の4つのプロセスを順に追うことで、解決策を推進していきたいと考えています。さらに、常識を疑い、新たな情報と組み合わせながら発想を止めず、創造的な仮説に肉付けを加える方法も取り入れていく予定です。 フレームワークの活用は? また、動画学習で触れたフレームワークも業務に積極的に取り入れることで、より実践的なアプローチが可能になると考えています。 毎月の数値分析法は? 具体的な取り組みとして、まずは毎月の数値分析に注力します。解約数やサービスの利用状況に下落傾向が見られた場合、商品やサービス自体に問題があるのか、利用顧客の属性に原因があるのかを、対前年比に加えて他年度や学年、属性別といった複数の比較軸で検証し、どこにギャップが生じているのかを明確にしていきます。 WEB数値の変化は? 次にWEB数値の分析にも力を入れます。今後のWEBサービスの定期的なリリースに合わせて現在の数値を把握し、増加する数値が示す傾向を基に、即時に対策を検討できる体制を整えたいと思います。 資格取得で成長は? 数値に対する意識を継続して高めるため、分析関連の資格取得も視野に入れ、さらなるスキルアップを図っていくつもりです。

クリティカルシンキング入門

思考を広げる!数字分解の新発見

数字をどう見捉える? 具体的なケーススタディを通じて、数字の分解やイシューの設定、メッセージの伝え方について学びました。数字を分解する際、特定の実例に引っ張られると、考えの幅が狭まることに気付きました。特に「観光」のイメージに縛られると、抽象度を上げる思考が難しくなりがちです。紙に書き出して共通点を探るなど、可視化する方法で考えるのが有効だと感じました。 見直しは本当に必要? また、イシューの設定では、他の数字を何度も確認しないと安心できない点が学びとして大きかったです。ひとつのイシューを見つけたとしても、「本当にそれで大丈夫か」「見落としていることはないか」を考え、数字の分解を見直すことを習慣にしたいと思いました。 チーム戦略はどうする? 現在リーダー役を務めているので、チームのメンバーや組織課題に向き合う際にこの知識を活用したいです。特に次年度のチーム戦略や目標を立てる際には、現状の組織課題をしっかりと把握し、イシューとして捉えた上で解決策を考えていくことが重要です。 抽象化の秘訣は? 抽象度を上げる思考は、身近な課題にも当てはまります。組織課題に取り組む際、他者から聞くチームのイメージや現在の業務に影響されて、思考の抽象度が上がりにくいことがあります。紙に書き出して抽象化する努力をしてみようと思います。また、イシュー設定に関しては、実務では分かりやすいイシューを見つけた時点で他の可能性を除外し、解決策を考えることが多いです。思考のプロセスを意識し、イシューを見つけた後にはそのイシューを再検討し、他の分解方法も試してみることを習慣化したいと考えています。

リーダーシップ・キャリアビジョン入門

受講生が描く学びの軌跡

モチベーションってどうして? 今回学んだ内容は大きく2点あります。まず、モチベーションについてです。モチベーションは個々に異なるものですが、マズローの5段階欲求や動機付け・衛生理論などを通して、自身の現状を把握する方法を学びました。特に、なぜ働くのかという動機付けの本質を理解することが、効果的なインセンティブの活用に繋がると感じました。また、モチベーションが低い場合には、その理由を明確にし、どのように向上させられるかを検証する必要があると実感しました。一方で、モチベーションが高い場合においては、現状で十分なのか、あるいはさらに高い目標があるのかを確認していくことが大切だと思いました。 振り返りはどう機能する? 次にフィードバックについてです。振り返りの大切さを再確認するとともに、振り返りの環境整備や質問力の向上が不可欠であることを学びました。数字だけの確認に留まらず、本人がどのように考え、どこで迷い、何がうまくいったのかといった具体的な点を掘り下げる質問が重要だと気づきました。これにより、課題の発見や他部門への展開が可能になると考えています。 1on1ミーティングでどうする? また、14日に予定されている1on1ミーティングに向けて、今回学んだ内容を復習し、先月の振り返りのための具体的な質問事項を事前に作成する予定です。数字的な成果について、できたこととできなかったこと、そしてその理由を整理し、モチベーションのフレームワークを実際に活用してみたいと思います。さらに、効果的なコミュニケーションを実現するために、聞き出す環境や信頼関係の構築も意識して取り組んでいきます。

データ・アナリティクス入門

仮説力で拓く新たな学びの旅

仮説とは何か? 仮説とは、論点に対する一時的な答えを意味します。仮説を立てる際には、決め打ちせず複数の可能性を検討することが重要です。フレームワークを活用して、どの指標を基準に、何と比較するか、またそのためにどのようなデータを集計し、どのように見せるかを考える必要があります。 データはどう取る? また、着目する指標や比較対象のデータを収集する際には、「誰に、どのように聴くのか」という点が大切です。都合の良いデータだけに頼ると、誤った仮説を前提にしてしまうリスクがあります。他の可能性を十分に考慮することで、不要な仮説を排除し、より正確な情報に基づいた議論につなげることができます。 議論はどう進む? 日常の業務においても、仮説をもとに論点を提示し、議論を重ねる場面が多いです。これまで経験や肌感覚から決め打ちしていた仮説も、複数の視点で検討することで、より網羅的かつ具体的な検証が可能になります。仮説を裏付けるデータの示し方や、どのように比較し、提示するかという方法も試行錯誤の対象です。 人事事例はどう見る? 人事領域の取り組みとしては、スタッフが出会い採用内定、入社からその後の活躍、さらには休職や退職に至るまでのジャーニーマップを構築した事例が挙げられます。まずこれまでの経験や収集できるデータをもとにストーリーとしてのジャーニーを描き出し、その後、ヒアリングや不足しているデータの補完によって仮説を検証・肉付けしていくという方法です。このとき、現状の仮説が網羅的かどうか、また他の切り口がないかを再確認し、データの取り方や示し方を見直すことが大切です。

マーケティング入門

新サービス普及の鍵は適合性と試用可能性

イノベーションの普及要件とは? 比較優位、適合性、わかりやすさ、試用可能性、可視性がイノベーションの普及要件であるという話は、非常に印象的でした。特に、試用可能性と適合性については、新しいサービスや商品に顧客を移行させたい今の時代において、必要不可欠な観点だと感じました。例えば、スマートフォンの普及は、元々ガラケーで電話を持ち歩く文化や、PCのWEB活用の素地があったからこそ、スムーズに進んだと考えます。 セグメンテーションの重要性 また、現代は価値観が多様化しているため、セグメンテーションを細かくし、自社にとってどこがメリットなのか冷静に判断することが重要だと理解しました。具体的には、ハーゲンダッツが「大人のアイス」というターゲットを設定し、「ご褒美に買うアイス=プレミアムアイス」という新たなジャンルを開拓した例が挙げられます。 誰に何を伝えるべきか? お金を借りることに抵抗がある人が大半であるため、セグメントをしっかり行い、どの層に何を伝えるか(例えば、低金利で無担保融資が可能であること)を明確にすることが重要です。さらに、実際にどのようなシーンでお金を借りることができるのか(教育、旅行、結婚など)を具体的に伝えることが求められます。 自社サービスの再検討方法 このように、イノベーションの普及要件に基づいて商品を見直すことや、競合を意識することの重要性を改めて認識しました。これを機に、自社のサービスの長所や、プロモーションで顧客に与えたいイメージ、行動変数を含めたマーケット選定、プロモーションの方法を再検討していきたいと考えています。

クリティカルシンキング入門

切り口が変える数字の物語

数字の意味は何か? 数字が持つ意味をより深く理解するためには、まず情報を分解して、その解像度を上げることが重要です。一つの視点だけでなく、複数の切り口から現象を分析することで、より正確な現状把握に繋がります。 結論前の検証は? 具体的には、一つの傾向に満足するのではなく、さらに他の可能性を探る意識を持つことや、得られた分析結果からすぐに結論を出すのではなく「本当にそうなのか」を丁寧に検証する姿勢が求められます。また、頭で考えるだけでなく実際に手を動かし、様々な視点からデータを見直すプロセスも大切です。 MECE活用で分析は? さらに、分析を行う際にはMECEの考え方を取り入れることが有効です。具体的には、階層、変数、プロセスという視点から、物事を漏れなく、重複なく整理していく手法が挙げられます。たとえば、プログラムの参加者数の伸びを検討する場合、年齢だけでなく居住エリアや参加プログラムの種別といった観点から属性を分析することで、より多角的な理解が可能になります。 課題整理はどう進む? また、自身の業務上の課題を明確化するためにも、評価の視点が抜けや重複なく組み込まれるよう、MECEを活用して細分化し、その対応力を数値化する手法は効果的です。担当している事業プログラムの認知度についても、過去数年間のデータを大学別、学部別、学年別、応募種別などの切り口で集計し、グラフ化することで、現状と改善点を明確にできます。もし、最初の分析で十分な結論が得られなかった場合には、別の切り口から再度分析を行い、想定される課題について漏れや重複がないよう整理することが大切です。

クリティカルシンキング入門

問いに挑む毎日の成長

今の問いは何だろう? イシューとは、今ここで答えを出すべき問いのことです。イシュー設定の際には、「問いの形にする」「具体的に考える」「一貫して抑え続ける」という3つのポイントを意識する必要があります。まずは、問いが何であるかをはっきりさせることが大切です。 全体で課題を共有する? 次に、その問いを常に意識し続けることで、解決すべき課題が見失われないようにします。そして、組織全体でこの問いを共有することで、皆が同じ方向性に向かって課題解決に取り組むことが可能となります。適切なイシュー設定は課題解決の成功に直結するといえるでしょう。 手法で問題を割り出す? また、これまで学んできたロジックツリーやプロセス分解の手法を活用することで、イシューを導き出す方法もあります。例えば、売上構成をロジックツリーで細かく分析し、問題を特定の要素(例えば、客数の少なさ)に収束させるといったやり方が考えられます。 ユーザー心理は理解済? さらに、自社サービスのウェブサイトに訪れたユーザーがどのような課題を感じ、最終的にどのような体験をしているのかについて、ユーザビリティテストを行わずとも自らイシューを見極めることが可能です。ユーザー行動に注目し、どの画面で何がわかりにくいのか、どのような心理を引き起こしているのかを把握することが重要です。 仮説検証の流れは? 具体的な取り組みの手順としては、まずチームで最も解決すべき問題(イシュー)を特定し、そのイシューに基づいてデータを精査します。その後、仮説検証を繰り返すことで、実際の課題や障壁を明確にしていく流れが効果的です。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

マーケティング入門

イノベーションを日常に活かす心得

イノベーション普及の要件とは? イノベーションの普及要件について学んだことは非常に有益でした。具体的には、次の5つの要件が重要です。まず、比較優位とは、新しいアイデアや技術が既存のものと比較して優れていることです。適合性については、生活に大きな変化を強いるものだと採用が難しいため、適合性を高めることが求められます。また、わかりやすさは、使い手にとって理解しやすく扱いやすいことが不可欠です。使用可能性は、実験的な利用が可能であることを示します。最後に可視性は、新しいアイデアや技術が周りから見て採用されやすい状態を指します。 顧客心理をどう理解する? 商品が売れるかどうかは、顧客のイメージによって大きく左右されます。そのため、顧客の声に耳を傾け、彼らの心理を理解することが重要です。差別化にこだわりすぎると罠に陥ることがあるため、売れない理由を常に考習する姿勢が求められます。 普及要件の活用法は? 顧客心理に訴えかけることを意識し、新しい取り組みや仕組みを社内で共有する際には、イノベーションの普及要件を強く意識していきたいと考えています。特に、相対的な優位性と適合性についてはこれまであまり考慮できていなかったので、今後はこれらを心掛けていきます。 日常での普及要件の習慣化 さらに、イノベーションの普及要件のフレームワークを日常的に意識し、習慣化したいと考えています。この視点を通じて、世の中の商品に改めて目を向け、様々な考察を行いながら知識を深めていきます。そして常に、相手の立場で物事を捉え、どのように魅せるかを他者の視点で意識していくことを心掛けます。

戦略思考入門

選択で築く、最適な未来

戦略思考とは何か? 今回のライブ授業では、戦略思考について学びました。戦略思考とは、企業の目的達成にとどまらず、あらゆる事柄で「できるだけ早く、苦労なく目的を達成すること」を目指す手法です。まず最初に、目的を明確にすることが大切であり、その後、多数ある達成手段の中から「何をやり、何をやらないのか」を選択する必要があります。さらに、他者が真似しにくい独自性を持つことで、取り組みが際立ち、有利に進めることが可能になります。 教授の定義は何だろう? その中でも、マイケル・ポーター教授が示した「何をやり、何をやらないのか」という戦略の定義が特に印象に残りました。日常生活や業務の中で、私たちは無意識に数多くの選択を行っていますが、自分が取り組むべきこととそうでないことを意識して選択する重要性を改めて感じました。 部門運営でどう実践する? 今後は、所属する部門での業務運営の中で、この戦略思考を活用していきたいと考えています。これまで「何をやるか」という視点に偏っていたため、本当に必要な取り組みが見えにくく、効率の面でも課題がありました。部門の資源と状況に合わせ、最大限の成果を上げるために、「何をやり、何をやらないのか」を的確に判断し、明確に示すことが大切だと感じています。 業務全体の改善点は? また、自分の業務全体を振り返り、商品や販売方法、チーム内の連携など、様々な観点から改善点を探っていきたいと思います。特に、「何をやるか」だけでなく「何をやらないか」という視点を持つこと、多様な見方を学び、広い視野で物事を捉える姿勢を今後も大切にしていきたいです。

データ・アナリティクス入門

データのばらつきを活用した営業活動の最適化

標準偏差の重要性とは? 分析において「比較」が重要であり、その方法を学びました。特に標準偏差について具体的な事例を交えながら学んだことは、今後に生かせると感じています。 仮説思考の新たな視点 また、仮説思考についてはプロセス・視点・アプローチが具体例に挙げられ、理解が深まりました。プロセスにおける考え方はこれまでの学びとも共通しており、理解しやすかったです。しかし、「トレンド」と「ばらつき」の視点については、これまで感覚でとらえていた部分があり、それを意識する重要性を理解できました。これは仕事のみならず、さまざまな場面で活用できると感じています。 標準偏差で何を補完する? 営業活動や生産計画の立案において、これまで単純平均や中央値を使用していたものの、不足感がありました。それが標準偏差による補完だったと気づきました。私が扱う商材の販売動向を把握するために標準偏差を活用し、「ばらつき」を視覚化することで、感覚に頼るのではなく客観的な判断が可能になると考えています。これにより、同僚への助言もより具体的なものになるでしょう。 データ分析での新計画 既に明細別の販売実績データを持っているため、各明細の単純平均と標準偏差を求めることを計画しています。標準偏差が低い明細の生産・在庫管理を優先することで欠品を防ぎ、標準偏差が大きい明細についてはその理由を明確にして、将来的な需要予測に役立てたいと考えています。 同僚と知識をどう共有する? 最後に、この考え方を同僚と共有し、部門内で単純平均に依存することの危険性を共に認識するよう努めたいと思います。

データ・アナリティクス入門

切り口が未来を拓く

どんな仮説を考える? 仮説を事前に多角的に考えることが重要です。仮説を構築するための材料として「比較の軸」が存在し、Week2の設問4では「どのような切り口が考えられるか」という問いかけがありました。そこで、いくつかの切り口を無理のない範囲で検討した結果、Week3の設問1における仮説パターンの設定が容易になりました。切り口がなければ、「30歳前後のビジネスパーソン」以外の像を描くのはすぐに行き詰まってしまいます。しかし、切り口を明確にすることで、切り口の個数や各切り口が持つ要素数が設定でき、その掛け算によって仮説パターンを構築する枠組みが整います。仮説は「そのパターンであれば、どのような状況や条件が考えられるか」という、一定のとっかかりをもって検討することが可能となります。 成長指標をどう見る? また、事業の成長を示す指数の設定についても考える必要があります。成長の指標としては、直接的には「売上」や「利益」が挙げられますが、これだけでは解像度が低く、分析やそれに基づくアクションの軸としては不十分です。エリアや商品分類ごとといった軸を設定し、より具体的な分析ができるように解像度を上げる必要があります。 どんな軸で考える? さらに、軸を設定する段階ではまず「切り口」となるアイデア出しが求められます。たとえば、分かりやすい切り口として「エリア」や「商品」が考えられますが、その他に「時間」や顧客側の分類(顧客、部門、属する業界など)も有効です。このようなアイデア出しの際には、ロジックツリーやブレーンストーミングといった手法が有効に活用できると考えます.
AIコーチング導線バナー

「活用 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right