データ・アナリティクス入門

分かると変わる!シンプル分析のすすめ

何がわかったら購入? パソコンを購入する際に、何を調べ、どのような情報が得られたら購入に踏み切るかという問いかけから、データ分析における「分析」の意味が明確になったと感じました。「分析」というと堅苦しくなりがちですが、「何がわかったら購入するか」というシンプルな視点を常に意識したいと思います。 意思決定のヒントは? 現状、組織全体でデータを活用して意思決定を行う文化が十分に根付いていないため、「何がわかったら◯◯するか」という観点を直接業務に取り入れるのは難しい印象を受けました。しかし、この視点を意識しながら業務を進めると、必要なデータや情報に気づく機会が増えると考えています。 新規事業の目的は? また、現在企画中の新規事業においても、「何が分かったら◯◯するか」という目的設定を明確にすることが重要だと感じています。特に、地域におけるアンコンシャス・バイアスの解消を目指す事業においては、目的が不明瞭な部分があるため、その課題解決の有用性をデータに基づいて説明できるようにしていきたいと思います。

データ・アナリティクス入門

議論が生む新たな発見

多角的視点で何が見えた? 学んだ内容を振り返り、複数の視点から議論することで、これまで見落としていた点や新たな切り口、さまざまなアプローチ方法に多くの気づきを得ることができました。今後は、このような環境を社内にも広げ、各自が自走できる体制を整えていきたいと考えています。 上司の依頼はどう活かす? 日常業務では上司からデータ分析の依頼を受けることが多く、上司の興味関心と実際の事業課題を明確に切り分け、目的意識を持った意味ある分析が事業に貢献できるような環境作りが求められると実感しました。また、データ収集がそれ自体の目的にならないよう、適切なデータの収集と活用に努める必要があります。 実行策にどうつなげる? このため、まずはビジネスプロセスマップやビジネスモデルキャンパスを作成して全体像を把握します。次に、関係者間で課題の所在を共通認識として持ち、データ分析を通じて課題の発見や優先順位、重要度を明確にします。最後に、分析結果に基づき実行策を評価することで、より効果的な改善策を進められると考えています。

クリティカルシンキング入門

知識から実践へ―反省が未来を創る

知識と実践のギャップは? グロービスの学習では、毎週のミニレポート作成を通して「知っている」と「使える」の違いを実感しました。ライブ授業の中で問われた際、インプットしたはずの内容がすぐには出てこなかったこともあり、知識を業務で実際に使うためには、継続的な反復練習や学んだことを意識的に活用する機会を作ることが重要だと感じています。 社内評価はどう変わる? また、社内のモチベーションサーベイの分析業務についても、これまで数値の比較に終始していた自分のアプローチを見直す機会となりました。今回、ライブ授業で学んだ分析のステップを業務に取り入れることを決意しました。 分析の手順は何? 具体的には、まず分析の目的を明確にするために問いを立て、その問いを共有することが大切であると認識しています。次に、情報を工夫し、必要に応じて新たな列を追加したり、割合を算出したり、データの並び替えを行います。最後に、グラフへと視覚化することで、数値だけでは見えにくかった情報を一目で把握できるようにする工夫を実践していきます。

データ・アナリティクス入門

仮説を実践!A/Bテスト現場記

目的は明確ですか? まず、A/Bテストを行う際は、目的と仮説を明確にすることが大切です。検証項目をしっかりと設定した上で、テスト対象を1つの要素に絞り、無駄な混乱を避けます。 期間は統一ですか? また、A/Bテストは必ず同じ期間内で同時に実施する必要があります。異なる期間で行ってしまうと、テスト以外の環境要因が影響し、正確な検証が困難になるためです。 仮説の幅広げる工夫は? キャンペーンメールの場合も、基本として要素を一つに絞り、同一期間での同時実施を心がけています。しかし、仮説を明確にするのが難しく、有意差が出にくい状況もあるため、フレームワークを活用して仮説の幅を広げる工夫を行っています。 最適仮説は何ですか? その上で、自分が実施したいキャンペーンにおいては、コンバージョン獲得のため検証すべき仮説を、フレームワークを用いて整理し書き出します。そして、どの仮説が最も効果的なのかを考慮しながらキャンペーンを実行し、結果をもとに検証と改善のサイクルを繰り返すことで成果を追求しています。

データ・アナリティクス入門

平均に惑わされない分析術

平均値では捉えきれない? データ分析の学びを通じて、平均値だけでは捉えきれない情報があることや、平均値そのものにもさまざまな種類が存在するという新たな視点を得ました。また、データの散らばりを正しく理解する必要性や、単調な棒グラフや円グラフ以外のビジュアル化手法にもそれぞれのメリットがある点を、具体的に理解することができました。 どの指標を選ぶ? これまでの分析では平均値に頼りがちでしたが、目的に応じて加重平均や幾何平均、あるいは中央値といった他の指標も活用すべきだと強く感じました。今後は、分析の目的に沿って適切な手法を使い分け、より的確なデータ解析を目指していきたいと思います。 SNS分析で何が見える? さらに、SNS系のコンテンツについては、年齢層や性別ごとのリアクションの違い、これまでのフォロワー増加率から今後の成長をどのように予測できるのかといった点について、より詳細な分析が求められると実感しました。今後は、こうした視点も取り入れて、より充実したデータ分析に努めていきたいと考えています。

データ・アナリティクス入門

目的を見据える分析の一歩

どんな学び方がある? 今週は、正直何をすればよいのか、どう学び、どのようにグループワークを進めればよいのかが分からず、新しいインプットがほとんど得られなかったため、少し物足りなさを感じました。もっと手を動かして分析に挑戦してみたかったという思いがあります。 目的を見いだすコツは? 目的を明確にして分析を始めることが大切です。一つのデータや事象に固執せず、視点を変えて全体を俯瞰しながら取り組む姿勢が求められます。常に目的を意識し、仮説検証が難しいときは生成AIの力も上手に活用していくことが重要だと感じました。 目的をどう守る? また、仮説思考でクリティカルに考える習慣を身につけるため、業務に取り組む際には常に目的を意識する必要があります。部下が目的を見失わないよう、状況確認を行うことも意識して取り組んでいかなければなりません。 広報の立ち位置は? 現在の広報業務においては、この仕事がマーケティングファネルのどの位置にあたるかを常に考えながら進めていくことが求められると強く感じています。

クリティカルシンキング入門

常に問い、磨く思考力

どうして姿勢が必要? クリティカルシンキングの3つの姿勢を基本に、業務課題の解決に取り組む大切さを学びました。具体的には、①常に目的意識を持つ、②自分の思考の癖を前提として考える、③どんなに考えがまとまっても問い続ける、という姿勢を今後意識して業務に臨もうと思います。また、事業戦略の立案や施策実行の際に、より良い方法がないかと問い直すことで、業務の質を高めたいと考えています。 戦略成功の秘訣は? 事業戦略の成功率を向上させるため、今回の講座で学んだ思考力の鍛え方や、他者に納得感を伝える説明力の重要性を実感しました。この学びを日々の業務に取り入れ、特に戦略立案や関係者の協力・合意を得る場面で積極的に活用していく所存です。 本当に良い判断は? 本日の業務からは、改めてクリティカルシンキングの3つの姿勢を意識し、自分の考えに対して「本当にそれでよいのか」という視点を加えることで、課題解決の精度をさらに高めていきたいと思います。週末までに関連動画も視聴し、必要な知識とスキルの習得に努める計画です。

クリティカルシンキング入門

未来を拓く振り返りの力

分析の目的は? 分析を進める際は、単に計算のしやすさで切り分けるのではなく、何のために分析するのかという目的意識が大切だと学びました。そのため、まずは仮説を立て、複数の切り口から考えることが求められます。結論が出たと感じても、再度丁寧に見直すプロセスが重要です。 視覚化の効果は? また、分析した結果を有効に活用するためには、視覚化が不可欠です。データをグラフや図表で表現することで、「目に仕事をさせる」効果が高まり、情報がより伝わりやすくなります。 行動予測はどう? 具体的には、お客さまの行動予測の場合、過去の実績データをもとに、締結チャネルの変化などを切り口にして分析します。月ごとの傾向を把握し、そこに変化が現れていないか、また今後どう推移するのかを考えることが大切です。 評価の均衡は? さらに、メンバーやスタッフのパフォーマンス評価においては、従来は品質と効率を個別に評価していました。しかし、両者をバランス良く満たす適正値を見つけることが、より正確な評価につながると考えています。

データ・アナリティクス入門

データ分析で役立つ具体的アプローチ

分析の流れをどう把握する? 分析とは、目的、仮説、問い、そしてデータ収集・加工を行うという流れをきちんと把握することが重要だと感じました。また、インパクト、ギャップ、トレンド、ばらつきなどの各因子を鑑みたうえで数値を見ていくことが必要であると理解しました。 代表値の注意点とは? 何かとすぐに飛びつきがちな代表値の中でも、特に単純平均値には注意が必要です。業務では、サイト流入数や売上など様々な数値を見る機会が多いため、一つの代表値だけでなく、多様な代表値を目的をもって算出したり、散らばりを意識した分析を行いたいと感じました。 データ収集のポイントは? 日次、週次、月次など期間を定めた上で、数値の意味を考えたデータ収集や分析を行うことが重要です。過去のデータを活用しながら自分なりの仮説を立て、今回学んだフロー(目的→仮説・問い→データ収集→検証)を実施していきたいです。また、インパクト(重み)、ギャップ(差異)、ばらつき(分布)といった視点を意識しながら、数値の意味を考えていきたいと思います。

データ・アナリティクス入門

問題解決のプロセス細分化とA/Bテスト活用の魅力

問題解決の手法を学ぶ 今週は以下のことが学べました。 問題の原因を明らかにする方法として、プロセスを細分化する手法があります。解決策を検討する際には、複数の選択肢を洗い出し、それらの根拠を基に絞り込むことが重要です。また、A/Bテストについても学びました。これはシンプルで運用判断がしやすく、少ないリスクで改善ができるため、さまざまな場面で使用できると感じました。 A/Bテスト活用の予定 A/Bテストは10月に予定している実証実験でも活用する予定です。正しい検証結果を得るために、目的と仮説の明確化をチームで議論しようと思います。また、現状の問題を特定し、「what, where, why, how」の要素に分解して再考する計画です。 実証実験でのデータ取得設計 さらに、実証実験でどのようなデータを取得すべきかをもう一度考え直します。何が分かれば次のフェーズに進めるのかを踏まえた上で、データ取得設計を行います。アンケート設計も、目的を明確にして得たい情報が確実に得られるように構築します。

データ・アナリティクス入門

データ分析の新しい視点を得る旅

データ分析の初め方とは? データ分析を開始する際、何も考えずに「とりあえず」データを引っ張ってくることが多いと感じていました。しかし、何を知りたくて、何の目的で分析を行うのかを明確にすることの重要性を改めて認識しました。特に、課題がある場合、その課題の根本を探るためには、MECEを意識して質の良い仮説を立てることが大切だと気付きました。 チームの課題をどう把握する? 毎週提出されるデータを見て、課題がどこにあるのか、そしてその課題に対する現在の立場やGAPを見つけるようにしています。まず、チームとしての課題や目標を確認することが重要です。これが明確になって初めて、どのデータを用い、どのように分析(比較)するのが適切であるかが理解できる気がします。 他社のフレームをどう活用する? 現在、特に明確な課題や問題があるわけではないので、よりよくするために現状と目標を比較しようと考えています。その際には、自社だけでなく、他社や市場で行われている同様の分析フレームを参照することも役立つでしょう。

データ・アナリティクス入門

自分を磨くデータの力

どうして受講したの? この講座を受講した理由は、自分が何のために学ぶのか、また今後どのように仕事に活かすかを明確にするためでした。受講を通じて、自らの目的を整理し、データ分析の知識を仕事に反映させるための考え方を身に付けることができたと実感しています。今後も積極的に学び、習得した知識を実践で活用していきたいと思います。 SNS分析はどう役立つ? また、私の仕事にSNS分析を取り入れることで、顧客の声や市場のトレンドをリアルタイムで把握し、戦略に反映させることができると感じています。具体的には、投稿への反応を分析することで、ブランドイメージや顧客満足度の向上に向けた改善点を明確にできると考えています。 伝え方に自信はある? さらに、自分が学んだ内容を同僚にもシェアし、職場全体でスキルを高める取り組みをしていきたいです。これからは、データ分析の基本である「比較なり」という格言を心に留め、どのような目的でどんなデータを集め、何を比較するのかという視点を常に意識しながら進めていく所存です。

「活用 × 目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right