デザイン思考入門

共感を導く情報設計の力

提言の進め方は? 普段は、自部門における業務改善提言をまとめる際、現状分析から課題の洗い出し、解決策の検討、そしてプロトタイプ作成にあたる「改善施策案」の作成まで、一連のステップを踏んでいます。その後、実際の現場にパイロット運用してもらい、評価結果を反映させたうえで全社展開するという流れで進めています。しかし、これらは経験則に基づいて実施しているため、精度については疑問を抱くことも多く、「本当にこれで良いのか」「もっと深く検討すべき点はなかったか」「チームにしっかり伝わっているか」といった不安がつきまといます。 情報設計はどう活かす? 今回学んだ「情報設計」では、ユーザーストーリーマップやカスタマージャーニーマップを用いて、一連の行動を可視化する手法が印象に残りました。仮説に基づいてコンテンツを洗い出し、ワイヤーフレームとして可視化することで、「誰に・何を・どのように」という視点を意識しながら情報の構成を検討する重要性を実感しました。また、モックアップ作成時にもアクセシビリティやユーザビリティを意識しつつ、現場の実情に合わせた設計が求められると感じました。 モックアップは要注意? 私の場合、業務改善提言に基づく施策案をプロトタイプとして捉えると、どうしても現場では具体的な作業方法や運用フローが前面に出やすくなり、結果としてモックアップになってしまうことが多いです。確かに、モックアップは現場の方々にとって分かりやすく、何をすべきかを直感的に提示できます。しかし、それが本当に効果的な施策であるかどうかは、ワイヤーフレームで情報の骨組みをしっかり設計し、基盤となるユーザーストーリーを正確に捉えることが必要だと改めて感じました。こうした視点を深く分析し、可視化することで、チーム内で課題を共有し、伝えることができると感じています。 共感で見える課題? また、プロジェクトの初期段階においては「共感」が非常に重要であると実感しました。先週、現場のエンジニアから「資料に説明が見当たらず、作業ミスが発生してしまう」との意見が出た際、彼らの状況や日々の業務背景を考えると、確かに説明不足は理解しやすい問題だと共感しました。一方で、別のメンバーが資料の他の部分で情報が補完されていると指摘するなど、一見対立する意見もあり、現場で働く人々の視点や状況に寄り添わなければ本質的な課題を把握し、改善策を導き出すことは難しいと痛感しました。 アイデアは整理できた? 今回のプロトタイピングでは、具体的なアイデア検討と自身の業務との関連付けを行いながら、意識すべきポイントを学ぶことができました。前回学んだ「言語化する」という手法と今回の「可視化する」という手法は、どちらも抽象的ながらも常に意識すべき要素だと感じています。情報設計、コンテンツ設計、そしてUI設計という一連の流れを通じて、体系的な実践方法を整理できたことは大きな収穫です。特に、ユーザーストーリーマップやカスタマージャーニーマップを用いてユーザーストーリーを正確に捉える点については、これまで疎かにしていた部分を改め、しっかりと実践していく必要があると強く意識しました。 目的を見失って? 一方で、どうしてもモックアップ作成に偏ってしまいがちな点、つまり自部署や自分の目的を優先してしまう傾向があることにも改めて気づかされました。あるメンバーが自作の資料に固執し、必要な対策が偏る事例を目の当たりにした経験から、業務改善その本来の目的である「ユーザーの目的」を見失わないためにも、情報設計を通じた体系的なアプローチの重要性を痛感しています。今後は、この学びをチームメンバーと共有し、偏った施策にならないように取り組んでいきたいと思います。

戦略思考入門

学びで切り拓く実践経済論

ビジネスの現状は見えてきた? ビジネスを理解するためには、従来の事例や定石に頼るだけでなく、自社の業界や時代の変化、競合状況を踏まえ、本当にその手法が有効かどうかを冷静かつ客観的に考える必要があります。 規模の経済性は何? まず、「規模の経済性」についてですが、生産数量の増加により製品1つあたりのコストが低減される現象です。固定費の吸収や大量仕入れによる変動費の低減が挙げられますが、固定費の種類によってはこの効果が働かない場合もあると理解しました。 習熟効果の影響は? 次に「習熟効果」ですが、累積生産量や作業量が増えるにつれて単位当たりのコストが低下するという効果です。たとえば製造業では作業のノウハウが、サービス業では仕事に慣れることがこの効果に当たります。しかし、技術革新によって作業が自動化されたり、新たな技術が導入されると、従来の習熟効果が薄れる場合もあります。一方で、代替されにくい分野では、習熟効果を重ねることで競争優位を保てる可能性があります。 範囲の経済性ってどう? また、「範囲の経済性」は、既に保有している資源や無形資産(知識や経験)を他の事業でも活用することでシナジー効果を生み、コスト削減につなげる手法です。たとえば、ある事業で培った経験やノウハウを別の分野で活かすことで、それぞれの事業が互いに後押しされる効果が期待できます。 ネットワークの経済性は? さらに、「ネットワークの経済性」については、参加者が増えることでその参加者自体にとっての利便性が向上し、結果として経済効果が高まる現象です。市場に早期参入し先行者利益を確保することで、そのサービスが事実上の標準となり高い利益に結びつくことが理解できました。 各メカニズムの注意点は? 業界や商品、サービスによっては、これらのメカニズムが通用しなかったり、逆に作用する場合もあります。そのため、自社の事業特性をよく理解し、状況に応じた手法の選択が重要です。 原価高削減の工夫は? 昨今の原価高騰を背景に、商品開発時のコスト削減を進める際、これらのメカニズムをベースにした手法の検討は有効と言えます。特に製造業では「範囲の経済性」や「習熟効果」がよく認識されています。例えば、ある事業で培ったブランド力や設備を別の事業に活かしたり、各事業で得た成功事例や人脈の共有によりシナジーを創出することが、自社ならではの強みにつながると感じました。 AI進化の影響はどう? また、近年のAIの進化により、さまざまな業界や業務が代替される中で、従来の習熟効果が薄れるリスクがある一方、逆にイノベーションによって代替されにくい分野で中長期的に習熟効果を高めることがチャンスでもあると捉えています。具体的には、人材のスキル向上や外部との人脈形成、さらにはブランド価値そのものの強化が挙げられます。 部署での取り組みは? 自分は所属する部署の立場を活かし、以下の取り組みを実践していきたいと考えています。まず、各事業での成功事例を分析し、その要因をノウハウとして蓄積・共有することで「範囲の経済性」を推進します。次に、各事業や部署間での人脈の共有を進め、協業を促進する環境づくりに努めます。最後に、担当する分野のスキルや知識の研修を強化し、人材の習熟効果を高めることで、競争優位の確立を目指していきます。

デザイン思考入門

観察と共感でひらく新発見

調査ログの見直しは? 今週、育児期間中の30~40代を対象に実施した過去のインタビュー調査ログを見直す作業を行いました。コーディングを意識しながら作業する中で、改めて一次データの重要性を実感しました。 抽出視点の違いは? ログから課題やニーズにつながる事象や行動を抽出する作業は、人の目に依存するため、抽出の視点が人によって異なりやすいと感じました。動画内でも経験が強調されていましたが、バイアスが働くと必要な情報に気付かなくなる可能性があるため、情報を絞りすぎると大切な観点を見落としてしまいそうだと危惧しました。 共感の重要性は? デザイン思考の最初のステップである「共感」では、ユーザーの見えない課題やニーズを発見するために、観察、体験、インタビューを繰り返すことが重要です。インタビューでは、観察で気になった行動の背景を心理面から深掘りし、共感を得られるように課題やニーズを言語化します。こうして得た情報をテキスト化し、コーディング分析を行うことで、単なる観察だけでは浮かび上がらない本質的な課題や行動を明らかにすることができます。 行動の理由を探る? 実際、観察や体験で注目した行動をインタビューで詳しく聞くことで、ユーザーが無意識に行っている当たり前の行動の理由を解明するプロセスの重要性を実感しました。課題を抽出する際は、互いの思い込みや認識の差が生じやすいため、情報共有を通じて共通認識を合わせることが求められます。しかし、立場や利害関係が異なる中で何を重視すべきかを調整するのは容易ではなく、うまく進む場合とそうでない場合があると感じました。 定性調査の有用性は? WEEK-3で学んだ定性調査は、新しい領域や馴染みのない状況で仮説を構築する際に有効な手法だと感じています。定量データだけでは掴めないユーザーの姿勢や心理を探るのに、インタビュー、フィールドリサーチ、ログ(日記)などの手法が効果的です。実際、観察を通じてユーザーが意識していない行動や癖から気付かないニーズや課題にアプローチできることもあります。 仮説構築の進め方は? 定性調査では、まずインタビューやフィールド調査で得た情報を整理し、要点となる事象や課題を抽出します。その後、抽出した要素をカテゴリー分けして情報を圧縮し、最小限の要素にまとめた上で、フレームワークやプロセスの形に図式化・構造化することで仮説モデルを作成します。 ヒアリングの工夫ポイントは? また、インタビューの際にヒアリング項目を整理したシートを事前に作成し、記入してもらってから話を聞く方法も有効だと感じました。ただし、記入式では重要な点が十分に言語化されない場合があるため、まずは日常の業務や業務フローなど現状を把握することから始める工夫が必要です。ヒアリングが雑談になり、課題に焦点が定まらなくなる場合は、ジョブ理論を参考にするのも一案です。実際、グループワークでフォームの改善に取り組んだ参加者の話では、ユーザーが入力の手間を感じないようにするため、従来の枠にとらわれない解決策が模索され、その柔軟な発想が印象的でした。

戦略思考入門

立ち止まる勇気で未来を拓く

立ち止まる意味は? 「がむしゃらにやるだけではなく、一度立ち止まることも必要。毎回すべてを実行していてはスピードが落ちるため、だんだんと勘どころが分かってくる」という言葉を胸に、講座全体を通じて自身の課題への取り組み方を見直す機会となりました。目の前の課題の解決にのみ意識が向き、その背景や真の原因を探ることがおろそかになってしまう点、また考え過ぎるあまり実際の行動に移るのが遅くなってアウトプットに時間がかかる癖があることに気づきました。今後は、課題に直面した際にこの言葉を思い出し、より本質的な解決に取り組むよう心がけたいと思います。 環境をどう見る? また、ビジネスは環境要因も大きく影響するため、全てを自分の責任と考えず、少し時間を置いて状況を客観的に見ることが大切だと感じました。自分に可能なこととそうでないことを見極め、過度に自責で考えない姿勢を忘れずにいたいと思います。 本質をどう捉える? さらに、「定量的、正確性、精緻性にこだわると仮説思考が広がらない」という教えから、枝葉の部分に気を取られ、本質である幹の部分を見失わないようにする必要性を痛感しました。そこで、常に「ここで本当に考えたいことは何か」を自分や参加者に問いかけ、目的を見失わない議論を意識していきたいと考えています。 余白の価値は? また、思考の習慣を変えるために「1%でも余白を作ること」が重要であると学びました。平日の日々の中で少しずつ学習効果を実感できたため、意識的に余白時間を取り入れ、自己研鑽を継続していきたいと思います。 新市場の戦略は? 既存事業とは異なる市場への参入を検討する中で、今回学んだ内容は大いに活用できると実感しています。プロジェクトの方向性を検討する際には、まずありたい姿を描き、次にどのように競合との差別化を図るかを考えます。そして、実行フェーズでは物事を整理し、思いついた施策すべてを実施するのではなく、本質を捉えた施策を選び抜き、戦略的に取捨選択する必要があると感じています。特に、プロジェクトの根幹に係る方針検討では、潜在顧客の表面的な言葉だけに頼ることなく、その奥にある真のニーズを把握するとともに、検討した施策がプロジェクトの目的実現に沿っているかどうかを吟味するため、戦略思考を積極的に活用するつもりです。 計画は順調ですか? 直近の報告イベントに向けて、まずは以下のスケジュールでアウトプットを進めていきます。まず1週間以内に、プロジェクトの3C分析、5Forces分析、PEST分析、SWOT分析を実施し、自社が置かれている立ち位置を明確にします。次に1ヶ月以内に、先行する競合に対してどう差別化を図るかを顧客視点と自社のケイパビリティからアイディア出しし、その妥当性をVRIO分析で検証の上、適切な施策を選択します。そして2ヶ月以内に、上位者への報告の場でこれらの方針をプロジェクトの基本方針として承認していただくことを目標としています。短いサイクルで実施することで、通用する施策と不足している点を明らかにし、次の学びに繋げていきたいと考えています。

データ・アナリティクス入門

データに秘めた学びのヒント

数値とグラフの違いは? 今週は、データ比較のアプローチとして、数値に集約する方法とグラフ化して視覚的に捉える方法の両面から学びました。数値に集約する際は、代表値として単純平均を用いることが多いですが、外れ値が混ざると平均値が影響を受けやすいため、その場合は標準偏差を活用してデータのバラつきを確認します。ヒストグラムを用いることで、グラフから傾向を読み取り、背景を推察する仮説思考の大切さも実感しました。 データばらつきの見方は? 標準偏差は分散の平方根であり、自然現象のバラつきが正規分布(釣鐘型)に従う場合、2SDルールで求めることができます。ただし、ピークが複数あるヒストグラムでは正規分布とならない点には注意が必要です。 成長率の計算は? また、成長率などの変化を計算する場合は、各年度の成長率を掛け合わせた数値のn乗根で算出される幾何平均を用います。複数のデータの平均を求める際、外れ値の影響がある場合は単純平均ではなく中央値を用いる方法も取り入れています。 散布図の意義は? 要素が2つの場合、散布図を用いて数値の関係性を視覚化し、相関係数によりその関係を数値化します。相関関係を直線で表現するために単回帰分析を適用し、相関係数はR、決定係数はR²として示されます。決定係数は、散らばりの何%が横軸の要因で説明できるかを示しますが、相関が必ずしも因果関係を意味しないことを改めて認識しました。 フェルミ推定を使う? さらに、データ収集の前に成果をもたらす要因を構造化するため、フェルミ推定を活用して方程式を作るモデル化にも取り組みました。フェルミ推定は、売上を上げる施策の検討にも用いられ、多角的に捉えてアクションに結びつける手法として有用だと感じました。たとえば、薬局の売上伸長を検討する際に売上を分解し、複数の施策を検討することで、利益の方程式と組み合わせてより分かりやすい説明が可能になると感じています。 相関と因果の違いは? また、気温とビールの相関性の事例を通して、これまで取り入れてこなかった相関性の視点を業務に役立てたいと考えました。具体的には、患者の平均待ち時間と減少率、在庫品目数と医薬品廃棄率、管理者への研修時間と理解度テストの結果など、さまざまな原因と結果の関係を散布図にして検証することで、業務改善につなげる手法を学びました。なお、常に相関と因果は一致しない点を念頭に置いて取り扱う必要があります。 適切なグラフ選びは? 最後に、これまでなんとなく選んでいた棒グラフや折れ線グラフに代えて、根拠を持って適切なグラフや散布図を選択する重要性を再認識しました。売上アップのための各施策を列挙し、売上と施策の関係を散布図で表すとともに、グラフの縦軸のメモリを工夫して読みやすさを追求します。その上で、相関係数や決定係数を算出し、どの施策が最も効果的だったかを分析し、上司や部下、部内と情報を共有していきたいと考えています。

クリティカルシンキング入門

問いで拓く戦略の未来

実例から学ぶ分解方法は? 実際のファストフード店の事例を通して、分解の仕方が違った切り口で学べたことが印象的でした。Week2の内容を思い出しながら、既存のパターンに加えて新たな切り口も見つけ、復習とパターンの拡充に繋げたいと考えています。 イシュー特定はどうすべき? また、イシューの特定が適切な打ち手を導く上で重要であると実感しました。打ち手を先に検討しても、イシューの特定が不十分では、施策が誤った方向に向かう可能性があります。実例では、客単価が下がったことを背景に、来店人数を増やすことで売上を向上させる施策が取られていました。もし客単価向上の施策を優先していたら、来店人数の伸びに結び付かなかったかもしれないと思います。 データ出し方は正確? データの出し方についても、漏れがあると問題特定が誤るリスクがあると学びました。データの提示方法や切り口について、「本当にこれでよいのか」と自問し、他者の確認を重ねることが重要であると感じています。 意見分裂をどうまとめる? さらに、イシュー特定を深めるために、チーム内で意見が分かれる場合のアプローチ統一や、異業界での異なる切り口を考えることも示唆されました。問いを常に意識し、共有することで、組織全体の方向性が明確になると理解しました。問いを中心に据えることで、議論が脱線せず、具体的かつ一貫した分析が可能になると実感しています。 問いの正しさは確認できる? 商談においても、そもそも自分たちが立てる問いが正しいかどうかを精査することが必要です。お客様との認識すり合わせを丁寧に行い、正確なイシュー設定を心がけることで、より適切な提案へとつながると考えています。また、これまではアイデア出しから議論を始めるケースが多く、議題が散漫になることもありましたが、今後はまず「何が課題か」を共有し、その上で話し合いを進めるようにしたいと思います。具体的には、イシューを画面共有して可視化する工夫を取り入れ、焦点がずれないよう意識していきます。 成果に結びつく問いは? 今回の学びは、チーム全体での売上向上施策を検討する際にも大いに生かせると感じています。正しい問いを立てることが、成果に向けた思考と行動の第一歩であると実感しました。これからは、上司と相談しながら「何が本当の課題なのか」を問い、仮説とデータ分析に基づいた多角的なアプローチを進めていくつもりです。 統一アプローチの秘訣は? また、誤ったイシュー特定を防ぐためのチェックステップや、チーム内で意見が割れた場合の統一アプローチについても検討し、日々の業務や学習に分解思考を取り入れる意識をさらに高めていきます。例えば、普段からニュースを読む際にも「どのような構造か」「なぜこうなったのか」を意識することで、多様な視点を養っていきたいと考えています。

データ・アナリティクス入門

データ分析で学ぶ問題解決の極意

データ分析の基本は比較すること? データ分析を行う際、常に重要とされるのは、次の三点の意識です。 まず、分析の基本は比較です。データの意味を正しく理解するためには、異なる要素を比較することが不可欠です。単独の数値だけでは判断が難しく、過去のデータや他の指標と比較して初めて有益な示唆を得られます。 分析の目的をどう明確にする? 次に、分析の目的を明確にすることです。なぜデータを分析するのか、その目的を常に意識することが重要です。目的が不明確だと、必要なデータを見落としたり、無駄な分析を行ったりする恐れがあります。 仮説の整理で見失わないために? 最後に、分析の前に目的と仮説を整理することです。データを集める前に、「何を明らかにしたいのか」「どのような仮説を検証するのか」を整理しておく必要があります。これが曖昧だと、分析の方向性を見失い、効果的な意思決定につながらない可能性があります。 これらのポイントを意識することで、より実践的で価値のあるデータ分析が可能となります。 依頼主の目的をどうヒアリングする? 現在の業務では、データ分析の依頼を受けることが多いですが、依頼主の目的や仮説を確認しないままデータ加工に進むことがあります。さらに、依頼主自身が目的や仮説を明確にできていないケースも少なくありません。その結果、分析が本来の目的に合致せず、期待した価値を生まないデータとなってしまうことがあります。 これらの課題を解決するため、データ分析に着手する前に、依頼の背景や目的、仮説を丁寧にヒアリングし、必要に応じて適切な方向性を示すことを目指します。単なるデータ処理のスキルだけでなく、適切な問いを立て、論理的に考える力が必要です。本講座を通じて、そうしたスキルや思考法を習得し、より価値のあるデータ分析を目指していきます。 継続的な改善が価値を生む? 依頼主の目的や仮説を十分に確認しないまま進むことを防ぐため、以下の行動を実践しています。まず、依頼時のヒアリングを徹底します。「何のための分析か」「どのような意思決定につなげたいのか」を明確にする質問を行います。目的や仮説が曖昧な場合は、具体的な事例を挙げながら整理をサポートします。 次に、仮説の検証を意識したデータ設計を行い、目的・仮説に沿ったデータの選定・加工・分析の方針を明確にします。必要に応じて事前に簡単なデータの傾向を確認し、分析の方向性が適切かを判断します。 最後に、分析結果に適切なメッセージを添えます。「このデータから何が言えるのか」「どのような意思決定に役立つのか」を言語化し、依頼主が結果を適切に解釈できるよう、シンプルで分かりやすい可視化や説明を心がけます。 これらを継続的に実践し、依頼主にとって本当に価値のあるデータ分析を行えるよう努めています。

デザイン思考入門

自分も受講したい!共感ステップの実践

なぜ共感が大切? 「共感ステップ」では、単なる情報収集にとどまらず、ユーザーの課題や背景を深く理解し、求める解決策を的確に見極めることが重要であると学びました。現在取り組んでいるワークショップ形式の研修デザインにおいても、受講者の視点に立ち、彼らが何を感じ、何を求めているのかを探るプロセスに重点を置く必要があると考えます。例えば、研修設計の段階で自ら受講者となって演習を体験し、ショートケースの妥当性や適切な所要時間を確認すること、また事前アンケートにより受講の狙いや期待を把握することで、表面的なニーズだけでなく本質的な課題も見極めることができると実感しました。 どう適用する? 共感ステップについて、具体的な研修デザインへの適用方法をよく考えられている点は非常に印象的です。より多くの受講者の視点やニーズを探るアプローチを試みることで、さらに多面的な理解が得られると感じます。 どの調査が有効? また、受講者の背景や課題を深く理解するために、どのような追加の調査手法が有効か、そしてワークショップデザインで共感をさらに深めるためにどのような方法を試すべきかを考えることも有意義だと思います。 どう設計すべき? 事前アンケートの実施や自身での演習を通じて、以下の点が重要であると改めて認識しました。まず、受講者のペルソナに応じた研修の難易度設定とシナリオ作成です。受講者の職種、経験年数、課題意識を踏まえ、適切なレベル感で研修を設計し、理解しやすいストーリー展開を意識することが求められます。次に、説明資料の粒度と所要時間のバランス調整が重要です。受講者の集中力や理解度を考慮し、必要な情報を適切なボリュームで提供するとともに、講義とワークの時間配分を最適化する工夫が必要です。さらに、ワークの難易度設定と題材設計については、受講者が主体的に考え、実践的なスキルを習得できるよう、初心者でも取り組みやすく、発展的な応用が可能な内容を用意することが大切です。 どう改善する? 今後も、受講者の視点に立ち、実際の学びにつながる研修デザインを追求していきたいと考えています。今週は、共感ステップの実践を通じて、ユーザー理解の深め方について学びました。現場に足を運び、ユーザーの行動や発言を客観的に捉える「現場観察」と、自らが取り組む中で感じる感情や視点を体験する「参与観察」との違いが印象に残り、これらの手法を組み合わせることで、ユーザーの潜在的なニーズや課題の本質を見極めるための深い分析が可能になると感じました。今後は、実践の場を通じて共感ステップをより意識的に活用し、受講者視点の学びを深めながら、研修デザインやサービスの改善につなげていきたいと思います。

データ・アナリティクス入門

データ分析の失敗談から学ぶ成功法

データ分析における意思決定とは? ビジネスにおける意思決定において、データ分析は非常に重要な役割を果たします。数値を可視化することで先入観にとらわれずに合理的な判断が可能となります。また、比較の際には、条件を揃えた上での分析が重要です。目的を明確にすることで、何を明らかにしたいのかという背景を理解し、分析の効果を最大化することができます。 失敗をどう教訓に活かすか? 日々の業務ではこれらの点を意識してデータ分析を行っているつもりでしたが、振り返ってみるとできていないことも多く、過去には目的を明確にしないまま分析に臨んだ結果、時間を無駄にして失敗に終わった経験もあります。しかし、この失敗を教訓に、分析の依頼者に対して背景や目的を確認することで、効率的なデータ抽出と適切な要因分析ができ、最終的には施策の成功に貢献することができました。この経験を通じて、分析の初期段階で目的を明確にすることの重要性を再認識しました。 今後の分析に向けた意識改革 現在の分析経験はまだ少ないと感じており、依頼されたものだけでなく自ら事業の課題に対してデータ分析を行い、積極的に提案していきたいと考えています。ウェブサイトの行動履歴ログを基にした流入、離脱、コンバージョンの分析を通じて、カスタマーの動きを把握し、学んだ知識を活かす場面は増えそうです。 依頼者とのコミュニケーションの重要性 過去には依頼者とのコミュニケーション不足で目的が不明確なまま進め、失敗した経験もありました。今後は、何を明らかにするための分析なのかを明確にし、依頼者と密にコミュニケーションを図ることで認識のすり合わせを心掛けます。また、データ抽出の間違いで時間を無駄にした経験から、目的達成のために必要な情報を収集し続ける努力を欠かさないようにします。さらに、分析結果を言語化する際には、簡潔かつ構造的にまとめることを目指します。 スキルの向上と今後の展望 これからは、データ分析に必要な情報を依頼者とのコミュニケーションを通じて収集し、過去の失敗や学んだ知識を活かして、目的の明確化、仮説の設定、納期、データ抽出の定義など、依頼者とすり合わせを行い、認識の齟齬をなくすよう努めます。依頼者が求める分析の目的を見失わないように、すり合わせた内容を基にして、全体像を把握するデータ抽出から始めるつもりです。分析結果は言語化し、依頼者と密にコミュニケーションをとり、振り返りを行います。 学んだ知識をもとに行動を重ね、情報収集やデータ抽出方法のツール、プログラムの習得などのスキルを磨きつつ、事業の課題に対して正確なデータ分析レポートを提供できるよう努力を続けていきます。

リーダーシップ・キャリアビジョン入門

指示から支援へ―リーダーの転身

リーダーと管理の違いは? リーダーシップとマネジメントの違いについて学び、リーダーシップは変革を推進し、長期的なビジョンの提示やメンバーの統合を担う一方、マネジメントは計画や予算、組織の人員配置などルールに基づいて効率的に運営する点にあると理解しました。現代の不確実な環境では、目的や状況に応じた使い分けが重要だと実感しています。また、以前「無意識で人をマネジメントする」という表現を用いていた自分の考えに誤りがあったことを学び、大変有意義でした。 パスゴール理論はどう活く? これまでの自分の行動が、パスゴール理論を通して明確に整理されたことも大きな収穫です。業務経験が浅い若手や中途社員に対しては、これまで指示型のアプローチを取ってきた一方で、彼らが成長するにつれて支援型へとシフトしていたことに気づかされました。一方で、仕事全体や環境要因の把握が十分ではないと感じたため、仕事の背景や現状分析により注力する必要性を再認識しています。 柔軟性はどう考える? また、マネジリアルグリットに関する学びを通して、人間への関心と業績への関心という自分の特性にも気づかされ、状況や相手に応じた柔軟な対応が求められると感じました。 新リーダーの初手は? 新たに未経験分野のチームリーダーを任されたことから、まずは「どんな仕事か」を理解するために環境要因の把握と分析を行っています。リーダーとしての4つの行動を実践するためには、まず部下の仕事の進め方や能力を観察し、適切な対応を見極めることが重要だと考えています。これまで経験の浅い部下には指示型で接してきましたが、成長に伴って支援型へ移行し、ゴールを明確にしながら自律的に考えて行動できるよう支援していきたいと思います。 チーム状況はどう把握? 新チーム発足の初期段階においては、まず次の取り組みを予定しています。まず、チーム全体の環境要因を分析し、市場やクライアント状況を理解するために、営業同行や過去データを活用して状況を把握します。次に、各メンバーとの面談を通じて、仕事に対する考え方や強み・弱み、価値観を聴取し、普段の業務を観察しながらパスゴール理論のどのアプローチが適しているかを検討します。また、チーム会などでゴールを共有することも重要だと考えています。 信頼構築のコツは? 基本的には、新チーム発足時という状況を踏まえ、まずはメンバー一人ひとりに興味を持ち、会話を重ねながら観察し、最適な関わり方を模索することで、信頼関係を築いていきたいと思います。

マーケティング入門

リアルな本音、ここに集結

どうしてヒットした? ある事例から、長年にわたって衣料品の製造販売で培った強みを活かし、マスクやスーツパジャマといった製品がヒットした背景を学びました。時代や社会情勢の変化に伴う顧客ニーズの変動、さらには隠れたニーズの本質を捉え、スピード感をもって製品を市場に投入することや、キャッチ―で分かりやすいネーミングで用途を明示する戦略が功を奏したと理解しました。 本音は掴めたか? さらに、顧客の真のニーズを見極めるための手法として、行動観測やデプスインタビューの有効性を確認しました。ただし、デプスインタビューにおいては、報酬を提示することでかえって本音が引き出しにくくなる可能性がある点を学び、本音を言いやすくするには、事前の雑談を通じて信頼関係を構築することが有効であると再認識しました。また、商品やサービスの真のニーズを探る能力は、日常的な物事への想像を巡らせる癖によって養われるという点も実践していきたいと考えています。 どこにペインを感じる? また、顧客ニーズだけでなく、解決すべきペインポイントの特定も新規事業を検討する上で重要な要素です。事業化を実現するためには、曖昧なニーズではなく、実際にお金を使ってでも解決したいと感じる課題に注目することがビジネスの種になると理解しました。さらに、カスタマージャーニーの作成を通じて、ユーザー目線で体験を観察し、ペインポイントを特定して適切な解決策へと導くことが、事業化のポイントであると学びました。 信頼構築は上手? 実務は必ずしも課題解決型の事業ではないため、ペインポイントの深掘りは難しい面もありますが、自社の強みを生かし、顧客の隠れた真のニーズを探り出す姿勢を忘れずに取り組んでいきたいと考えています。特に、デプスインタビューにおいて報酬提示が本音を引き出しにくくするという点は、これまで気づいていなかった新たな学びとなりましたし、事業推進者が目の前にいるだけで本音が言いにくくなるという現状にも、改めて注意する必要があると認識しました。 やり方は確認した? ・行動観測では、実際に想定顧客の動きを観察し、ニーズを正確に把握することに努めます。 ・デプスインタビュー実施では、顧客の深い本音や改善点を引き出すため、信頼関係の構築に心がけながら取り組みます。 ・カスタマージャーニーの作成によって、顧客のタッチポイントや行動、思考をファクトベースで分析し、実態を正しく把握することを目指します。

データ・アナリティクス入門

分析に魔法なし!日常に隠れたヒントを探せ

分析とは何を理解するべき? 分析とは何かについて理解しているつもりではあったが、それを言語化することが出来ていないことに気づかされた。また、ライブ授業や動画学習で言及される内容は日常的に行っていることでも、その目的や意図を明確にすることの重要性を改めて認識した。 ライブ授業での学びとは? 【ライブ授業】 分析の基本的な考え方として、「具体的に」かつ「はっきり」とさせることで意思決定に役立てることが非常に印象的だった。これは当たり前のことながら、この理解により方向性や手法を誤らないための指針として機能することがわかった。さらに、棒グラフについては、縦よりも横の方が差を認識しやすいというテクニックが参考になった。分析が第三者に理解され、納得してもらうことが目的であるため、このようなテクニックは非常に有意義であると感じた。 動画学習で気づいたことは? 【動画学習】 「Apple to Apple」のように、分析には条件が等しいものを比較することが重要である一方、世間には意図的に「Apple to Orange」を行っている情報も存在する。この講義では、提示された資料の分析目的や意図を意識することの重要性について学んだ。また、生存者バイアスの考え方も参考になった。目に見えるデータに偏りがちだが、隠れたデータが示す意味について仮説を立てて考えることが重要であると学び、業務に生かしたいと思った。 後輩指導にどう活かす? 後輩の指導や同僚の資料作成の際には、この講義で学んだ考えを意識して取り組みたい。その分析の目的は何なのか、比較対象は正しいのか、隠れたデータが何を意味しているのか。与えられた情報だけでなく、背景を含めて俯瞰する視点を持ちたい。また、自分の行う分析や提案に際しても同様に、目的を持ち、仮説を立て、対象を選定し、隠れた情報に注意を向けることを意識する。 高精度な需要予測を目指すには? 私の担当する製品はSKUが非常に多く、その需要は季節や景気、エンドユーザーの意向によって大きく左右される。また、競合他社の動向にも影響を受け、需要予測が難しい。これまでは自部署の過去データのみを参考に需要予測と予算を立案していたが、これは客観性に欠けていた。今後は業界実績やその時のトピックスも取り入れることで、生存者バイアスを避け、より精度の高い分析を行いたいと考えている。

「分析 × 背景」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right