データ・アナリティクス入門

データ分析で発見する成功のカギ

比較に意味があるのは? 分析は比較であることを理解しました。つまり、比較に意味がない数値を比べることは無意味だと感じました。 失敗例から学ぶ分析法 データ同士の要素を揃えることも重要だと考えます。これまで成功例をいくつか分析して共通の要素を探したことがありますが、振り返ってみると、失敗例でも同じ分析をして失敗しているケースが多々あったのではないかと思います。それは、本当の成功要因とは異なると思います。 成功要因の鍵は何か? 広告などのクリエイティブにおける結果の分析で、特に比較要素が多い動画クリエイティブでは、成功事例と失敗事例を踏まえて、本当にキーとなるポイントを発見することができれば、大きな成果につながると感じます。 具体的目標に向けて行動 3月末までに業務の特定の箇所を学んだデータ分析を用いて数値を改善させる目標を立てました。毎週の授業の中で、具体的に自分の業務をイメージしつつ、会社の中で自分がどう行動するかを考えながら学習に取り組んでいます。

クリティカルシンキング入門

論理で拓く成長の道

なぜ系統分解する? 問題解決にあたっては、主観的な判断を極力排除し、各要素を系統的に分解する手法が重要であると学びました。MECEの考え方を参考に、まずはトレーニングを重ねながら、必要な要素を網羅的に整理する力を身につけたいと考えています。 どの角度で検証する? また、IT分野でのシステム設計や事後分析においては、目的や問題点を明確にし、多角的に分析する姿勢が求められると感じました。どの角度から、どのレベルまで検討するかを意識することで、より高い品質のアウトプットを実現できると実感しています。さらに、クリティカルシンキングの向上には継続的なトレーニングが不可欠であり、ビジネスシーンにおいても振り返りの時間を大切にすべきだと思いました。 自己評価はどう? 今後は、本コースで学んだ思考方法を活かし、過去の問題分析を振り返る中で、自分のアプローチが主観的になっていないか、また適切なレベルまで検証できたかを再評価し、次回以降のタスクに役立てていきたいと考えています。

クリティカルシンキング入門

小さな問い、大きな発見

問題はどう浮かび上がる? 要素を分解して検討することで、解決すべき問題を明確にすることが可能です。データを提示する際にも、意図を持って伝えなければ単なる数字の羅列に過ぎず、その意味は薄れてしまいます。また、問題解決の方向性を定める際は、ただアイデアを出すのではなく、まず適切な問いを立てることが重要です。問いの立て方次第で、最終的な成功確度が大きく変わるため、時間と労力を問いの検討に注ぐべきだと感じます。 現場でどう対策する? 具体的な業務の現場では、所属する広告グループでの広告施策の検討において、この考え方が非常に役立ちました。たとえば、ブランドの健康状態について、どのような問題や課題が存在するのかを細かく分析し、その上で広告という刺激がどのような対策となり得るかを論理的に整理することが求められます。ブランドの課題や背景を正確に把握し、対策の方向性や具体的な手段を順序立てて考えることで、実施する施策が本当に課題解決に寄与するかどうかを見極めることができるのです。

クリティカルシンキング入門

多視点で発見!学びの可能性

新たな視点の重要性は? 一度一見納得のいく答えにたどり着いた後でも、その答えが本当に正しいのかを疑う視点を持つことが重要だと思います。ほかの視点から再度考えることで、これまで気づかなかった事実に気付く可能性が高まります。また、要素を分解する際には、MECEの考え方に基づいてデータを重複なく漏れなく整理することが大切だと感じました。 どうすればリソース確保できる? また、サーバ保守業務に従事している私にとって、ユーザから届くリクエストの分析は日常的な作業です。一定時間ごとのリクエスト数を見ることで、日中と夜間で訪問者数の違いを把握でき、サーバの応答時間の計測を通じてシステムへの負荷状況を確認することが可能です。リクエストのトレンド分析により、将来的に必要となるサーバ台数の予測が行え、適切なリソース確保につながります。また、応答速度の追跡を通じて、サーバが限界を超えるリスクを事前に察知し、システムダウンを防止するための対応策を講じることができると感じました。

アカウンティング入門

数字で読み解く戦略の秘訣

どうして定量視点が大事? ビジネス全般において、定量的な要素を取り入れることで価値を生み出せると知り、普段からその意識を大切にしています。これまでハードルが高いと感じていたアカウンティングも、語源に立ち返った説明で基本が理解しやすいと知り、苦手意識を少しずつ克服できたと感じています。 どうして財務分析を重視? また、これまで経験や感覚、他者からの情報に頼って戦略を立案していた私ですが、財務三表を読み解くことで企業の状態や価値を正確に把握し、その情報を戦略立案の重要なリソースとしたいと考えています。アカウンティングの知識を活用することで、戦略の妥当性や正当性をより一層高めることが目標です。 どう実践で知識定着? 具体的な取り組みとして、毎日1本の動画を視聴してアカウンティングに関する知識を深めるほか、1日30分の学習時間を設けることにより知識の定着を図っています。さらに、週末には企業ごとに財務三表を分析し、実務に役立つ経験を積むよう努めています。

データ・アナリティクス入門

核心に迫る、学びの一歩

問題の核心は何? 何が問題なのか、つまりWHATを特定することが最も重要です。最初にHOWから入る方法は、場合によってはうまくいくこともありますが、運の要素が大きく、適切なアプローチとは言えません。また、MECEの考え方もほどほどに取り入れ、さまざまな切り口を試みるものの、それに固執することで正しいアプローチを逃してしまう可能性があります。 数字はどう分析? 新規の店舗出店における収支計画書(PL)の作成とレビューでは、数字に基づいた具体的なギャップを把握しやすいという利点があります。さらに、他の業務においても、最初にHOWから入ってしまう傾向があるため、まずは問題そのもの、つまりWHATを追求する姿勢が求められます。 方法論の先行は? 以前受講したクリティカルシンキングの講座で、何よりもまず「何が問題か」を意識することの重要性を学びました。しかし実際に研修課題に取り組む際、いまだに「どうすれば」という方法論が先行してしまうのが現状です。

戦略思考入門

多角的視野で挑む戦略の一歩

複数意見で何学んだ? 今週は、営業方針プレゼンに関する3人の意見をもとに、考え方の整理と多角的な視点の重要性を学びました。特に、3C分析、SWOT分析、バリューチェーンといったフレームワークの意義を改めて認識することができました。 3つの要素、何感じた? レクチャーでは、①経営者の視座で考える、②ジレンマを過度に恐れない、③他者の意見をしっかり聞く、という3つの要素が強調されました。個々の経験により同じ課題に対して着目点が異なるため、広い視野を持ちつつ、フレームワークを活用して偏りなく分析し、整合性をもって戦略を考えることの大切さを実感しました。 議論でどう生かす? また、これらの学びは社内会議やタスクチームでの議論にも活かせると感じました。普段から自分の視点に偏る傾向があると痛感しており、今後は経営者や部門のリーダー、チーム全体のビジョンという視点を意識しながら、考えたことをメモにまとめるなどして知識の定着を図りたいと思います.

データ・アナリティクス入門

問題解決を極める!MECE活用法

問題解決プロセスはどうする? 問題解決のステップであるWhat/Where/Why/Howを実施する際、MECE(モレなくダブりなく)に留意して問題を切り分け、明確化することは、普段の業務でも自然に行っています。しかし、これを改めて整理すると、より理解が深まることを実感しました。 部下の問題対応をどう支援する? 実務においても、問題に対してモレなくダブりなく切り分けて明確化し、要因分析を行えているかを確認したいと考えています。部下から日々さまざまな問題が報告される中で、この点が確実にできているかを検証し、対策をまとめるサポートをしていきたいと思っています。 部門内の案件をどう分析する? 直近で部門内で問題となっている案件を選び、それぞれの担当者がどのように問題の要素分析を行い、どのような検討を経て対策を導き出しているのかを確認したいと考えています。特に要素分析の段階でMECEをしっかりと実施できているかを重視して見ていきたいです。

データ・アナリティクス入門

結果に響くMECE学びのヒント

結果を重視する理由は? 問題解決にあたっては、要因ではなく結果から考える姿勢が大切であると学びました。また、ロジックツリーを作成する際、MECE(漏れなく、ダブりなく)を意識することの重要性も実感しました。特に、厳密さ自体を目的とせず、第3階層程度で異なる要素を加えても構わないという点は、意外性があり印象に残りました。 メール分析のポイントは? 顧客向けキャンペーンメールの分析では、属性をMECEに分類することで、有意差のある項目を見つけ出すことが可能となります。これにより、意味のある仮説が立てられ、有意な差を検証できるA/Bテストの実施につながります。 属性戦略はどんな風に? 今後は、各属性がどのような方法で、どれほどの期間で入手可能かを確認した上で、MECEに分類し、ロジックツリーで整理することが必要だと考えています。このプロセスを通じ、特に注力すべき属性を明確にし、それぞれに応じたメール配信の戦略へと展開していきたいと思います。

データ・アナリティクス入門

日常に息づく比較分析の知恵

比較方法はどう選ぶ? 分析を行う際は、比較が重要であると学びました。たとえば、ある要素の効果を検証する場合、その要素がある場合とない場合を比べ、その他の条件をできるだけ一致させることが求められます。 目的は何で大切? また、データを分析する前に、何のために分析するのか目的を明確にすることが大切です。その目的に沿って必要なデータを収集し、目的に合わせて加工や分析を行い、得られた結果を言語化することで、ビジネス上の判断材料として活用できます。 今後どう実践する? 今回の学びが直ちに業務に活かせる場面は少ないかもしれません。しかし、問題解決の基本的な考え方を意識しながら業務に取り組むことで、今後の課題解決に役立てることができると感じています。 継続の秘訣は? さらに、何事も使わなければ忘れてしまうものです。業務にすぐに適用できなくても、日常生活の中で今回学んだ分析手法を実践し続けることで、着実にスキルを磨いていきたいと考えています。

データ・アナリティクス入門

キャンペーンを成功に導く効果検証術

キャンペーン効果をどう活かす? キャンペーンの効果検証に生かすことができると思います。これまで効果検証を次の施策や会社の計画に反映できていないことが課題でしたが、キャンペーンの結果を本講座の分析法で分析し、そこから見えてくる考察を基に新しい取り組みを提示したいと思います。 商品性の比較はなぜ必要? また、現在部署で新規事業の検討を行っております。その商品性の検討に際して、他社商品を比較することが必要です。分析を行うことで、商品性に取り込みたい要素や難しい要素を明らかにすることができると思います。 課題解決に向けた具体策は? これらの課題に対し、次のことを行っていきたいです。 - WEEK1で学んだ内容の共有 - 分析対象となるものの選定 - 比較対象のピックアップ WEEK1で学んだことは既にチームメンバーに共有しており、メンバー全員が納得した内容でしたので、今後も新たな気づきを共有し、実践の場で活用していきたいと思います。

データ・アナリティクス入門

数字が語る!ストーリー分析

各要素はどう繋がる? 今週は、分析にはストーリーがあるという重要な視点を学びました。What、Where、Why、Howという各要素を明確に把握し、各段階のアクションが前の段階とどのようにつながっているかを振り返ることで、無駄のない論理的なアプローチが可能になることを実感しました。 数字の意味はどうなる? また、分析の前提として数字と率の両面から取り組むことの大切さを認識しました。これにより、現時点で顕在化している問題が自部門にとって大きな課題なのか、あるいは今回は重要な対策の対象ではないのかを判断できるため、効果的な意思決定の材料となります。 自分の考えは正しい? 今後は、自分でテーマを設定し、日々の業務データに基づいた分析や検証を積み重ねていきたいと思います。報告資料には自分の考えや仮説を取り入れ、チーム内で説得力のある説明を行うことで、今後の活動に役立つ具体的な提案を実施し、都度見直しながら継続的な改善を図っていきます。

「分析 × 要素」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right