データ・アナリティクス入門

平均だけじゃわからない、データ物語

代表値の選定はどう? データ分析の学びで、まず印象に残ったのは代表値を考える際に、単純平均だけではなくデータのバラつきを十分に検討する必要がある点です。普段便利に使われる単純平均ですが、その値が適切な代表値になっているかは、データの分散や偏りを合わせて考えなければならないことに気づきました。具体的には、データの性質に応じた代表値として、加重平均や幾何平均、極端な値の影響を抑えた中央値など、さまざまな手法を学びました。 標準偏差はどう捉える? また、バラつきを評価するために、標準偏差(SD)や2SDの考え方を改めて認識することができました。統計的な手法を用いることで、人が感じがちな「恣意的な操作があるのでは」という疑念に対しても客観的な根拠を示すことができる点が非常に興味深く感じられました。2SDの範囲が極端な値を排除する役割を果たすという考え方には納得できるものでした。 評価の分散はどう見る? 業務では主に人事データや研修後のアンケート結果を扱う中で、10段階評価の平均値のみならず、標準偏差や中央値を併せて分析する重要性を再認識しました。例えば、講評の平均値がある数値であっても、評価が全体的に均一なのか、それとも高評価と低評価に二極化しているのかは、ばらつきの分析なしには判断できません。標準偏差が大きい場合は評価が分散し、逆に小さいと評価が平均近くに集中していることが明確になるため、データの分布や偏りを把握する上で非常に有用です。 集計手法はどう進める? この手法を実践するために、まずは研修のアンケート結果をExcelに集計し、標準偏差(STDEV.PまたはSTDEV.S)や中央値(MEDIAN関数)を計算します。次に、標準偏差が大きい場合にはヒストグラムを用いて評価の分布を視覚的に確認し、外れ値が全体に与える影響についても検討します。こうした分析を定期的に行うことで、研修の質や受講者の満足度について、従来の単なる平均値以上の具体的な洞察が得られると考えています。

データ・アナリティクス入門

仮説で解く!未来への挑戦

仮説分類はどう理解? 仮説の分類について学んだことで、結論の仮説と問題解決の仮説という二つの考え方を理解することができました。結論の仮説は、ある論点に対して仮の答えを示すもので、たとえば、ある飲料メーカーがノンアルコール商品の健康面へのアピールを通じて客層を拡大した事例が印象的でした。一方、問題解決の仮説は、現状の現象から原因を究明し、対策や予防策を講じるための仮説であり、データの収集と分析能力の向上が不可欠であると感じました。 仮説で説得力は増す? また、仮説を立てることで検証マインドが育ち、他者に説明する際の説得力が増すことを実感しました。エビデンスに基づく行動が、具体的な改善策の実現を後押しすると考えています。 減少原因は何? 具体的な事例としては、まず勤務先の大学において、受験者数が過去4年間で大幅に減少している現状があります。この原因を解明し、定員確保につなげるためにも、仮説の活用が大変有効だと感じています。 精神問題はどう見る? さらに、偏差値の高低にかかわらず、精神的な問題を抱える学生が増加している点にも直面しています。ADHDやASD、ゲーム依存などの問題が見られ、これが原因で学生間や教職員とのトラブル、保護者からの苦情、さらには退学や留年の増加につながっていると考えています。これらの現象について、過去の研究や調査、実践活動報告を参考にしながら、本学での適切な対策を検討するために、問題解決の仮説を立てて取り組む必要があると思います。 対策の進め方はどう? 具体的には、まず学生相談室や担任、教職員へのアンケートを実施し、各部署からの情報を集約します。次に、問題とされる事案の件数や種類、これまでの対応内容とその結果を整理し、国のガイドラインやマニュアルと照らし合わせることが求められます。さらに、他大学で実施されている取り組み事例を調査し、本学で実施可能な対策案を策定します。その際、専門知識を持った人材や協力可能な関係機関との連携も視野に入れる方針です。

データ・アナリティクス入門

仮説構築で新たな視点を得る方法

仮説構築の秘訣は? 仮説を構築し、データを活用して問題解決を進めるためには、いくつかのステップが重要です。まず、問題の発生箇所を明確にすることが必要です。具体的には、問題の所在を深掘りするために、原因仮説を立て、検証のためのデータを集めます。仮説を効果的に立てるためには、フレームワークの活用が有用です。 4Pのポイントは? マーケティングの視点では、4Pフレームワークを使って事業展開を整理することができます。製品、価格、場所、プロモーションの各要素が顧客のニーズや適正かどうかを評価します。適切なデータを集める方法としては、既存データの活用やアンケート、インタビューが挙げられます。各手法の長所と短所を理解して、目的に応じた選択が求められます。 多角的検証は? 仮説を立てる際には複数の仮説を用意し、異なる視点から網羅的に検討することが大切です。仮説の検証に際しては、比較の指標を意識的に選択することが必要です。具体的には、データを収集・分析し、仮説に説得力を持たせるためには、反論を排除する情報まで検討することが重要です。 意義はどこに? 仮説設定の意義としては、検証マインドや問題意識の向上、迅速な対応が可能となる点が挙げられます。こうしたプロセスを経ることで、自分の業務に対する関心を高めることにつながります。 販促の効果は? 販促企画の効果検証や販売目標達成の実績を見る際には、売り上げが伸び悩んでいる商材を特定し、どの要素に問題があったのかを4Pを用いて検証することが求められます。これを元に具体的な施策の効果を評価し、次の糧とすることが重要です。 実績比較はどう? 販売実績を基に、商品ごとの実績を昨年と比較し、価格変動の影響や来客数の動向、プロモーションの効果を定量的に評価すべきです。それにより、次年度の方針を検討することが可能となります。このように、精緻な分析を通じて課題を明確にし、解決策を打ち立てるための指針とすることが重要です。

戦略思考入門

新規事業への挑戦と差別化戦略の本質

顧客視点が差別化の鍵? 差別化戦略を考える上で、どの顧客に届けたいかを決めることが重要だとわかりました。顧客にとって価値が訴求できるか、固定観念に縛られず顧客視点で競合を意識することが、施策を考える上での重要なポイントです。また、模倣困難性の構築には歴史条件や因果関係の不明性、社会的な複雑性が絡んできて、単なる技術力だけでなく自社独自の顧客との関係性も含まれることが理解できました。どのようにそのネットワークをビジネスの中で活かしていけるか、今後考えていきたいです。 新規事業において別物を考え続ける理由は? 特に印象に残ったのは、動画の中の「ちょっとした差異ではなく、全く別物を考える」という言葉です。新規事業を考える上で、既存の仕組みの中にアイデアを無理やり入れ込もうとするのではなく、新しい仕組みを考え続けたいと思います。 ビジネスモデルの検討に重要な視点とは? 自身の業務は新規事業開発であり、自社の強みや独自性を入れ込みながらどのようなビジネスモデルが考えられるか検討する必要があります。まず、誰に対して価値を提供するのかを考え、3CでいうCompanyの分析をしっかり行うことが大切です。ただ、自社の独自性を活かしたモデルを意識して考えるのは非常に難しいと感じました。 フレームワークの実践で得られる効果は? また、差別化戦略では今後のビジネスプランの立案において、どのような施策を打ち出していくかが重要です。VRIO分析を用いて説明することで、より納得感のあるものができると感じました。 テクノロジーで可能にする新しいビジネスとは? 学んだフレームワークを身近な企業で実践し、チームメンバーに共有することも考えています。例えば、SWOT分析やバリューチェーン、VRIO分析を既存の事業で行ってみることです。現在の業務においては、自社の強みや独自性を考えるのは難しいので、「テクノロジーで可能になるビジネスは何か」という観点で間口を広げて考えてみたいと思います。

マーケティング入門

体験で魅せるオンリーワンの価値

商品単体の差別化は? 商品単体では他社との差別化が難しく、関連する体験を通じた+αの価値が重要であると感じました。たとえば、購買検討や実際の利用前後の体験を丁寧にヒアリングや観察分析することで、ターゲットが求める価値の体験を正しく把握し提供することができると思います。 体験が結ぶ感情は? また、体験は感情と密接に結びついているため、体験をうまく設計すれば価格競争に巻き込まれず、他社との差別化に繋がると感じました。顧客がいつ、何によって、どのような喜びを感じるのかを具体的に設計することで、ポジティブな体験はお客さまとの接点を強化し、長期的な関係構築にも寄与すると考えています。 オンリーワンの秘訣は? 具体例として、お菓子ではなく「おやつ」として情緒的な付加価値を届けるといった発想から、自社のオンリーワンとなれる強みを検討する重要性を再認識しました。施策を通じ、商品やサービスの提供だけでなく、体験価値の設計を意識しながら、さらに深い顧客理解に基づいた価値提供を目指していきたいです。 DM施策はどう改善? 一方、現状のDM施策では、お客さまへの提供や体験を通じた購買促進の設計が不十分であると感じています。今後は、フォローアップ段階においても顧客にとって価値ある内容を検討し、より良い体験価値の提供につなげたいと思っています。 来場イベントの工夫は? また、来場型のイベントにおいては、企画・運営の中で人員や時間に追われ、十分な体験設計ができていない部分を改善する必要があります。今後は、優先順位を明確にし、どこまで詰めることができるかを考えながら進めていきたいです。 感情分析の重要性は? さらに、自社がオンリーワンと考える強みについて、顧客が実際に体験した際の感情や効果をより深く分析することの重要性を感じています。顧客の声が集まりやすい環境であるにもかかわらず、それを十分に活かしきれていないため、今後は顧客分析の優先度をさらに高める必要があると強く認識しました。

戦略思考入門

本質を追求する戦略習得の旅

戦略はどう明確に? 戦略立案においては、最初に「誰に対して、どのような価値を提供するか」を明確にすることが重要です。戦略や手法は、その後に検討すべき手段であり、それ自体を目的とするべきではありません。しばしばこの順序が逆転しがちで、手法が先行してしまう傾向があります。 差別化の秘訣は? 差別化に関しては、見かけだけでなく顧客にとって本質的な価値を持つ差別化が必要です。持続的な競争優位を築くには、競合他社が簡単に模倣できない要素を見出すことが不可欠です。差別化戦略は単に「他社との違いを作る」ことではなく、「顧客価値の創造」と「持続可能な競争優位の構築」を目的としています。これには、VRIOフレームワークが実践的なチェックリストとして有効であることを学びました。 ジムの真価は? 実例としては、あるフィットネスジムのように、「他のジムよりも高価格」であることが表面的な差別化です。しかし、その本質的な価値は「確実な結果を得られる安心感」や「マンツーマン指導によるサポート」、「高額投資による強制力」などが挙げられます。そして、それらの価値を持続的に提供するために、組織としてどのような体制を整えるかが重要です。 VRIOの立ち位置は? まずはVRIOフレームワークで自社の立ち位置を明確にしたいと思っています。私たちが提供できる価値や他社と比べての希少性、模倣困難性、組織としての行動を整理し、それを新規営業での提案資料として活用することが目指すところです。 既存客価値はどう? まず既存クライアントへの価値提供を強化し、VRIOフレームワークの各項目を確立します。たとえば、在庫管理システム案件の着実な遂行や生成AIを活用した業務効率化の提案資料作成、データ分析レポートの質的向上に取り組んでいます。 外部資源はどう活かす? さらに、外部リソースの確保も進めています。具体的には協力会社やフリーランスの選定、業務の切り分けの検討、引継ぎドキュメントの準備を行っています。

データ・アナリティクス入門

問題解決のプロセスを極めた学び

どうやって問題を整理? 問題解決の第一歩は「何が問題ないのか」を具体的に整理することです。この際、関係者間で「あるべき姿」と「現状」に対する共通認識を持つことが重要です。基本的な流れは、①「何が問題か?」②「どこに問題があるか」③「なぜ、問題が起きているか」④「どうするか」ですが、必ずしもこの順序に縛られる必要はなく、各ステップを行き来することが求められます。 ロジックツリーは有効? ロジックツリーの活用により、全体像を意識しやすくなります。MECE(Mutually Exclusive, Collectively Exhaustive)の考え方に基づいて、意味のある方法で問題を分けることが肝要です。 売上回復の道は? 売上が低迷している商品のリニューアルを考える際には、売上を回復させる目標を新規購入者の獲得なのか、離脱者の呼び戻しなのかによってターゲットやパッケージの方向性が変わってきます。関係者間で売上回復の基準を共通認識として持っていることが必要です。提案を説得力あるものにするためには、MECEを活用して効果的な方向性や代替案を提示します。 市場分析は足りる? プロダクトアウトの新商品の方向性を検討する場合には、市場分析が不足している段階で商品化が決定されたケースもあります。例えば、コンセプト調査を行ったものの生活者の反応が芳しくない場合、ロジックツリーを通じて問題の仮説を立て、検証し、解決策を模索します。 選択肢は適切? アンケート調査では、選択肢設定にMECEを用いることで効果的な結果を得ることが可能です。 プロセスの流れは? 商品化作業に取り組む際のプロセスは以下の通りです。まず、問題の共通認識を揃えるためにデータ収集を行い、関係者間で問題認識を共有します。次に、チームでロジックツリーを用いて網羅的に「Where」「Why」「How」の案を出し、それに基づいて方向性の第一候補と代替案に絞り込みます。その後、経営陣にこれを共有します。

クリティカルシンキング入門

思考の偏りを解消するクリティカルシンキングの力

クリティカルシンキングの目的とは? ワークを通して、思考は偏りやすいことがよく分かりました。クリティカルシンキングを学ぶ目的は、頭の使い方を知り、思考の偏りをなくすことだとわかりました。その際、有効な方法の一つがロジックツリーで、考えやすい部分だけを掘り下げないようにすることができます。私はアイデアが浮かんだ際に、物事のある一面だけを膨らませて進めようとする癖があるため、まずは目的達成に必要な要素を整理するようにしたいと思いました。 お客様の声にどう対応する? 私はソフトウェアの保守サイトの運営やコンテンツの制作を担当していますが、お客様アンケートなどで「情報は豊富にあるが、目的の情報にたどり着かない」という声を多くいただきます。この課題をクリティカルシンキングを学んで解決したいと考えています。お客様によって導入の目的、運用スキル、使いたい機能などが異なるため、それぞれの目的の情報にたどり着くためにどのような導線を用意すればよいのか?その際、どのような視点でお客様の行動を分析するのがよいのか?などを、社内の複数部門で連携し仮説を立てているのですが、いずれのシーンでも判断が難しい状況です。クリティカルシンキングで思考の制限を取り除くことができれば、このような場面で正しい状況判断ができ、効果的なCX改善につなげられると思っています。 思考制限を取り除くには? 自分の中で思考を制限してしまわないように、広くいろいろな立場の人の意見を収集して課題分析することが必要だと思いました。最近は会社の方針で時間の節約を求められるため、限られたメンバーの意見をもとに課題の改善検討を進めることが多くなっています。講座の中でも「社内の常識は非常識」という話が出ていましたが、社外の専門家の意見などを幅広く収集する機会を増やしてもよいと思いました。また、収集した課題をロジックツリーなどにあてはめ、要素分解することで、課題の本質が想定外のところにあることに気付ける機会を得られそうです。

戦略思考入門

振り返りから学ぶ戦略のヒント

戦略の整合性をどう整える? 戦略を考える際には、広い視点で各要素を検討しつつ、それらの整合性を必ず意識することが重要です。また、高い視座と長期的な視点を持って実現したい姿を整合させることも求められます。そのためにはフレームワークを身につけ、それを活用して分析することが必要です。 フレームワークを活用するには? <フレームワークの例> - 3C分析 市場/顧客・競合・自社の順番で分析を進め、市場と顧客を重点的に理解することで事業成功のための知見やマーケティングの方向性を得ることができます。シンプルで使いやすく、効果も高いのが特徴です。 - SWOT分析 内部の強み(Strength)と弱み(Weakness)、外部の機会(Opportunities)と脅威(Threats)を分析し、自社とビジネス環境を把握することで戦略立案に役立てることができます。 - バリューチェーン分析 製品やサービスが消費者に届くまでの事業活動で付加価値が生まれる箇所を分析し、基本戦略や改善に役立てることができます。また、競合や業界全体のバリューチェーンとの比較を通じて、バリューチェーンの再構築を検討できます。 SWOT分析で何を明確にする? 私の事業部は設立から2年余りで、定量的および定性的な分析の蓄積が不足しています。その中で、来期に向けた重点課題を明確にし、優先順位を決め、取り組まないことを決定する段階にあります。ですので、SWOT分析を用いて事業部の強みと弱みを把握し、それに基づいて課題の選定を行いたいと考えています。 データ比較で見えることは? まず、他事業部とのデータを比較し、要因を分析します。それに基づき、すぐに取り組める事項と中長期的な取り組みを棲み分けして戦略のヒントを得ようと考えています。そして、チームメンバーとの協議では、広い視野と高い視座を意識し、方向性の不一致を避けるよう留意したいです。

戦略思考入門

リソースを集中活用するススメ

リソース配分は正しい? 限られたリソースをどのように効果的に活用するかを考えることの重要性を学びました。すべての顧客に均等にリソースを割くのは非効率であるため、時間当たりの利益貢献度を基に優先順位をつける必要があります。このアプローチにより、成果が期待できない部分のリソースを大胆に削り、重要な顧客に集中することで、組織全体のパフォーマンスを向上させる戦略が明らかになりました。 ROIで判断する? また、ROI(投資対効果)という視点を活かして意思決定を行うことが効果的だと気づきました。各顧客の売上や利益率、時間当たりの利益貢献度を分析し、ROIが高い顧客にリソースを集中させることが望ましいです。さらに、顧客特性に応じて最適なアプローチを取ることで、ROIをさらに向上させることも可能です。たとえば、長期関係のある顧客には信頼を高めるサポートを、新規顧客には競合と差別化する対応が求められます。 業務見直しは必要? 日常業務においても、昔からの慣習に流されずに、その業務が本当に必要なのかを常に問い直すことが大切です。FAXや印鑑など、過去の流れで続けている作業が本当に不可欠か見直す必要があります。また、不要な業務は思い切って削減し、削減で生まれた余裕を付加価値の高い業務に振り分けます。 自動化は進んでる? 自動化についても常に考慮し、人手で行う業務をRPAや自動化ツールで代替できるかを検討します。その結果、実施可能な自動化プロジェクトをリスト化し、効果的な実行を目指します。 業務目的は何? さらに、業務の目的を定期的に問い直すことも重要です。「この業務は何のためにあるのか?」を見据え、目的に合致していない業務がないか確認し続けることが、より効率的な働き方につながると考えます。効率化の意識をチーム全体で共有し、改善案や気づきを他のメンバーと積極的に共有することで、全体としての効率化を支える体制を築いていきます。

クリティカルシンキング入門

問いがひらく実践の扉

問いの意義は何? テーマ「問い」では、まず問いの意味や狙いを意識し、その問いを常に念頭において行動することの重要性を学びました。問いを共有することで、組織全体で方向性が統一され、互いの取り組みに対する理解も深まると感じています。 売上分解の狙いは? 実践の一環として、ある事例をもとに売上をどのように分解し、売上増加のための施策を考えるかを学びました。売上は店舗数、店舗あたりの客単価、そして客数に分解でき、特に客数を増やすことがまず重要であると示されました。具体的には、テレビCMなどを通じた認知度の向上、値下げやキャンペーンによる消費者へのインセンティブ、新商品の投入などが挙げられています。また、基本要件を満たす「QSC」や「MadeForYou」といった施策により、既存の顧客を取り戻す工夫もされている点が印象に残りました。 単価向上の方法は? 一方で、単価を上げるための方策も検討され、サイドメニューやセットメニューの充実、単価の高い新商品の開発が必要だとする考えが示されました。これにより、売上全体の構成比率において、店舗あたりの売上や客数が大きく伸びた結果、客単価も一定の割合であることが確認できました。 問題発見と解決は? 今回の学びを通して、問題発見力と問題解決力の両面がいかに重要かを実感しました。私が所属する部署では、抽象的な「採用強化」や「退職防止」「人材活用」といった大きなテーマが山積みになっている状況ですが、まずはこれらを細かく分解し、言語化・数値分析することで、実際に行動に移せるレベルまで具体化する必要があると感じました。 学びを振り返る? また、これまでの講義や入門編の学習内容も振り返り、分解、言語化、数値分析といったプロセスを手間と感じずに実行することが、最終的には効率的な問題解決への近道であると理解しました。こうした基本に立ち返ることが、今後の総合演習にも大いに役立つと確信しています。

データ・アナリティクス入門

視点を超えて拡がるデータの世界

要素の重要性は何? 分析に必要な要素としては、プロセス、視点、アプローチの3つがあると学びました。前回はプロセスについて掘り下げた講義でしたが、今回は視点とアプローチに重点を置いて進められ、その重要性を実感しました。 視点の捉え方はどう? 講義では、まず視点としてデータを俯瞰的に捉えることの大切さが強調されました。一つのデータ情報に固執すると、全体のインパクトを見逃し、局部的な視点ではトレンドやパターンを捉え損ねる可能性があると感じました。そのため、まず広い視野で全体を把握し、どこを掘り下げるかを判断しながらスコープを徐々に絞っていくことが、目的達成のためには必須であると言えます。 視点の基本はどこ? 視点に関して、講義では以下の観点が挙げられました:  ・インパクト  ・ギャップ  ・トレンド  ・ばらつき  ・パターン 数値と図で説得できる? また、アプローチについてはグラフ、数字、数式を用いる方法が効果的であり、具体的な数値や図を使った分析が理解を深めるポイントとして紹介されました。 インパクトをどう捉える? 顧客のサービス利用データを検証する際には、どのセグメントが最も大きなインパクトを持っているか、また長期的な視点での変化を確認することが重要だと再認識しました。こうした視点から、インパクトの大きいセグメントに対して営業リソースを集中させたり、コンテンツマーケティングを推進する戦略も考えられます。 セグメント分析は十分? さらに、顧客セグメントの検証をより深堀りする必要性も感じました。導入ユーザーのセグメント検証においては、単に導入社数が多いセグメントだけでなく、導入社数は少ないもののインパクトが大きいセグメントが存在しないかを検討することが求められます。また、単なる属性データの比較に留まらず、実際の顧客行動をイメージしながらデータと照らし合わせて検証を進めることで、より実践的な洞察が得られると感じました。

「分析 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right