データ・アナリティクス入門

ひらめき!挑戦の軌跡

問題解決の狙いは? 問題の所在を明らかにするためには、セグメンテーションや条件分けが重要です。まずは層別分解に取り組み、プロセスのどこに弱点があるかを見極めることが求められます。こうすることで、解決策が散漫にならず、問題の本質にフォーカスできます。 仮説はどう洗い出す? 仮説の洗い出しは容易ではなく、思いついたことをそのまま書き連ねても網羅性が得られにくいという課題があります。そこで、まずは核となるアイデアを抽出し、それを一般化したうえで再び具体的な形に落とし込む方法が有効です。さらに、対となるカテゴリも設定することで、フレームワークを活用した仮説の構築が可能になります。 データ活用はどう進む? また、「データドリブン経営」の推進に向けては、必要な検討やデータ収集、分析、結果の共有が事業改善の鍵となります。基礎的な経営結果データを効率的に可視化し、顧客タッチ数などの経営結果を動かすドライバデータを補足することが大切です。これにより、どのような意思決定を行うか、またそれに必要なデータが何かを明確にすることが可能になります。 売上分析のポイントは? さらに、売上分析環境の構築にも注力する必要があります。たとえば、PowerBIを活用すれば、各メンバーが見たい切り口でデータを分析できる環境を整備できます。具体的には、商談数、顧客タッチ数、提案数、商談期間などのデータを取得し、可視化することで、より精度の高い意思決定を支える基盤が構築されます。

クリティカルシンキング入門

物事の本質を見抜く力を養う学びの旅

イシューをどう捉える? 物事の本質【イシュー】を正確に捉えることの重要性を学びました。 まず、イシューを正確に捉えることができないと、誤った提案をしてしまうリスクがあることを理解しました。そのため、イシューを特定する方法として「問いから始める」「問いを残す」「問いを共有する」というアプローチを学びました。 学びを実践するには? ここまでの学びの総決算として、WEEK1からWEEK4までの内容を実践しました。分解・分析を駆使して例題を解いていく中で、以下の点を意識しました。 資料作成時には「誰に何を伝えたいのか」を常に意識し、文面でも視覚でも効果的に伝えることを心がけました。 議論の進行をどう工夫する? ディスカッションでは、話が逸れやすいため、会話形式でも常にイシューを意識して取り組むようにしました。 実務上では、チャットアプリなどを用いたやり取りの中でも、イシューから逸れることなく、主語述語を意識して対応することに留意しました。 また、ディスカッション形式のやり取りの際には、必ず議事録を取り、文字起こしをすることで重要な情報を収集し、クリティカルに問題を見つけることを実践しました。 正確な提案をするために さらに、イシューの特定から着手することの重要性を認識しました。解決すべき課題を明確にすることで、適正な提案が可能となり、そのプロセスでは必ず自分一人で判断せず、同僚や上司にも報告・共有しながら進めていくことが大切だと学びました。

データ・アナリティクス入門

数字が紡ぐリアル戦略ストーリー

数字の意味は何だろう? 分析のアプローチについては、ただ単に分析を進めるのではなく、数字に基づくストーリーを意識することの重要性を実感しました。統計データを見る際にも、平均値だけでなくばらつきを把握することで、より正確な判断ができると感じています。データ全体の傾向を理解した上で、平均、中央値、最頻値といった代表値から最も適切なものを選ぶことが大切です。 課題解決の鍵は? また、顧客の課題に対して解決策を提案する場合、やみくもな分析ではなく、具体的な数字に裏打ちされたストーリーによって、提案の確度を高め、顧客の納得感につなげることが求められると考えています。顧客自身が「これなら解決できる」と信じ、実行に移していただくためには、具体的で説得力のある根拠が不可欠です。 戦略の軸は何か? さらに、これからある不動産ブランドの戦略を分析する際には、まず「何を知りたいのか」という問題意識をはっきりさせ、最終的にどのような結論に導きたいのかを明確にすることから始めます。その上で、価格帯やエリア、スペックなど細かい情報に分解し、必要なデータが取得可能かどうか確認することが大切です。 仮説はどう練られる? 次に、取得したデータをもとに、なぜその戦略が採用されているのかという仮説を立て、検証の優先順位をつけながら実態を深く理解していく流れが有効だと感じました。こうした手法を通して、現実に即した分析が行え、説得力のある結論に結びつくと確信しています。

リーダーシップ・キャリアビジョン入門

理想のリーダー像を追求する旅

理想のリーダーとは? 私がなりたい理想のリーダー像は、メンバーをしっかり観察し、その特性や習熟度を考慮しながら、組織と個人の目標を達成するために導ける人物です。クールでありながら、時には感情的な側面も持ち合わせたリーダーをイメージしており、具体的には特定のリーダーの例を参考にしています。しかし、この講座を通じて心に残ったのは、リーダーが環境や部下の適性によって行動をうまく使い分けることも重要だということです。 論理思考の磨き方は? 強化したいスキルとして、まず論理思考力があります。論理性を高めるために、クリティカルシンキングの反復練習とともに「視点」を意識した状況分析、課題の明確化、解決手段の策定を行い、他方面からの検討を踏まえた提案を提示していくことを目指しています。具体的には、データ分析を基にしたマーケティングにおいて、分析の目的や軸、どのような洞察が得られたか、その課題に対して何がベストな解決策かを整理し、情熱を持って示すことができるように訓練したいと考えています。 事例発表はどうする? そのために、まずデータ分析に基づくマーケティングの事例において、その目的やビジョンを明示します。次に、自己の実践結果や事例を紹介し、それに賛同してくれるメンバーを集め、彼らの事例も収集し、必要に応じてサポートを行います。そして、月次部会や営業部長会議などの発表機会を通じて取り組みを紹介し、メンバーの成果が正当に評価されるような発表を目指します。

データ・アナリティクス入門

未来の問題解決力を養うナノ単科の魅力

問題解決の4ステップとは? 問題解決の4ステップについて確認しました。これらのステップは、問題の明確化、問題箇所の特定、原因の分析、そして解決策の立案です。問題が発生した際には、このフレームワークに従って課題の本質と原因を十分に把握し、それを踏まえた解決策を検討することが重要です。ビジネスではスピード感が求められることが多いですが、原因分析を急いでしまうと誤った解決策に至る可能性があるため、注意が必要です。 仮説設定のポイントは? また、仮説を考える際のポイントには、複数の仮説を立てることや、仮説同士の網羅性を持たせることがあります。決めうちせずに、異なる切り口で仮説を立てることが大切です。仮説は他の可能性を排除した先にあるため、データによる裏付けも重要です。特に社会課題を扱う際には、原因の仮説が「分かりやすい」ものに走りがちですが、常に複数の可能性を視野に入れてデータを検討することが必要です。 フレームワークをどう活用するか? 提案やブレストの際には、今回のフレームワークを取り入れたいと考えています。また、チーム内で問題解決の4ステップを共有し、データの取得方法を数字だけでなく、アンケートや口頭での情報収集など選択肢を広げて検討することも重要です。 仮説設定が重要な理由は? 特にデータ分析では「仮説設定」が最も重要であり、クリエイティブが求められる分野だと感じています。今後、この点を重点的に取り組みたいと思います。

データ・アナリティクス入門

平均だけじゃ見えないデータ

平均値だけで大丈夫? 今週の学習を通して、データを扱う際に平均値だけを確認するのは不十分であると改めて実感しました。平均値はデータの中心傾向を示すものの、ばらつき(分散や標準偏差)を反映していないため、データの特性を正しく理解するには中央値や最頻値など他の代表値も併せて確認する必要があると感じました。 グラフの選び方は? また、データを直感的に把握するためには、単なる数値の羅列ではなく可視化が重要です。グラフの種類を適切に選ぶことで、データの傾向やパターンがより分かりやすくなります。時系列データには折れ線グラフ、カテゴリごとの比較には棒グラフ、割合を示す場合には円グラフなど、目的に応じた使い分けが求められると再認識しました。 代表値はどう使う? 普段、さまざまな部署とデータ分析を行っている中で、平均値だけではなく他の代表値を用いることや、適切なグラフを選択することが業務に直結する重要な要素となっています。これまで平均値のみで示していたデータに対して、中央値や最頻値を加えることで、より正確な解釈につながると感じています。 今後どう進める? 今後は、データを扱う際に平均値に偏らず、中央値や最頻値、分散などの情報も徹底的に確認します。また、他者が作成したデータや可視化についても、目的に適しているかどうかをチェックし、必要であれば適切な改善点を提案することで、誤った解釈を未然に防ぎ、正確な意思決定につなげていきたいと考えています。

データ・アナリティクス入門

実務に直結!データ活用の学び

実務講義はどう感じる? 今週までの講義やグループワークを終え、本格的なデータ加工、代表値とビジュアル化、データ傾向の把握といった実務に直結する講義が始まりました。私自身、エクセルの基本理解が十分でなかったため、代表値や散らばりを用いてデータ傾向を確認する方法や、グループワークで触れたピボットテーブルやクエリを活用した作業効率化に関する気づきは、今後につながる貴重な学びとなりました。これまでの業務の進め方を見直す上でも、大変有意義な受講でした。 業務効率向上の秘訣は? 所属企業ではグループ店舗のデータ集計・分析や戦略提案を担当していますが、基本知識の不足から作業効率が悪く、長時間を要することが多く苦労していました。しかし、今回の学びを通じて、データの意味を正しくとらえる方法や、効率的な集計作業の進め方が理解できたため、すぐに実務に活かしながら、少しずつスキルを向上させていこうと考えています。 基本技術はどう磨く? さらに、グループワークを経て代表値や散らばりの重要性に加え、エクセルのピボットテーブル操作など、データ集計の基本技術の習得が急務であると実感しました。そのため、早速オンライン動画でエクセル操作(ピボットテーブル活用)のレクチャーを受け、本日以降はこれまで触れていなかった基本知識をさらに深めるとともに、データの傾向把握のために代表値や散らばりに注目した確認を行い、誤ったデータ解釈につながらないよう注意していこうと思います。

データ・アナリティクス入門

仮説を多角的に検証する重要性に気付いた日

仮説検証におけるフレームワークの役割 仮説を立てるための考え方について学びました。特に、3Cや4Pのフレームワークは、以前大学で学んだものの、実際の仕事では体系的に使用していませんでした。しかし、これらを意識することで仮説検証のための情報整理に役立つと感じました。 仮説A以外のデータも探すべき? また、自分の仮説に都合の良いデータだけでなく、仮説A以外の可能性を否定するデータも収集することの重要性に気付きました。実務ではスピードが求められ、自分の仮説を証明するデータを集めがちだったので、この学びは大変有益でした。これからは、直接的なデータだけでなく、複数の切り口からデータを検証するよう心がけたいと思います。 具体的には以下の点に活用できると考えています: - **企画・施策立案** - **クライアントへの提案内容の精査**:クライアントの立場に立って仮説を複数持つことで、より効果的な提案が可能です。 - **ユーザーの動向分析**:例えば、使用率が下がっている場合の原因検証などに使えそうです。 - **目標の設定**:年間目標の設定や到達見込みの予測に活用できます。 行動前に何が大切? 行動の前に、もっと仮説の検証やデータの収集に時間をかけることが重要だと感じました。今後は、「データを分析して仮説を立てる」という従来の手順から、「仮説を立ててデータを分析して検証する」という手順に意識を変えていきたいと思います。

戦略思考入門

初めてのバリューチェーン体験で広がる視野

どう視野を広げる? 経営者の視野を持ち、大局的に物事を見る姿勢や、ジレンマを過度に恐れず他者の意見をしっかり聴くことが重要だと感じました。これらの点は、自分自身の苦手領域でもあり、改善に向けた具体的なアクションが必要だと認識しています。 どの分析を活用する? フレームワークとしては、3C分析とSWOT分析はこれまでの金融業界での経験から馴染みがありましたが、バリューチェーン分析は今回初めて学びました。担当エリアに製紙業界のお客様が多い中、不景気=収益性低下という認識が根強い現状に対して、各社の強みや弱みを整理するために、この分析手法が非常に有効であると感じています。 顧客実情は分かる? また、法人営業として様々な業種の経営者と接する中、実は企業のバリューチェーンについては十分理解されていないケースが多いと実感しています。バリューチェーン分析に慣れることで、顧客の実情や背景をより深く把握し、3CやSWOT分析を組み合わせた提案が可能になると期待しています。これにより、マクロな経済環境も踏まえたより適切なアプローチができると考えています。 実践に向けてどう? 今後は、主要な顧客のバリューチェーンをまず徹底的に分析し、競合他社との比較を行います。その上で、SWOT分析および3C分析を通じて、各社の強みや弱みを整理し、経営者との面談でフィードバックを受けることで、更なる学びと実践に活かしていきたいと思います。

データ・アナリティクス入門

さまざまな視点で問題解決を探る魅力

分析に必要な切り口とは? 分析を行う際には、さまざまな切り口を持つことが重要です。性別や年代といった属性に加えて、契約内容なども分析に取り入れることで、問題解決の糸口が見つかる可能性が高まります。物事を分析する際には、MECE(Mutually Exclusive and Collectively Exhaustive)の原則に従い、要素が重複したり欠けたりしていないか確認することが必要です。また、ロジックツリーを用いて、物事を分解して考えることで効果的な分析が可能になります。 問題解決に向けた新しい視点は? 分析において、それぞれの属性や切り口に新しい視点を加えることで、問題解決へと繋げることが求められています。バイアスを排除し、客観的な視点で物事を理解するためには、問題や課題を細分化して考えることが有効です。 契約者分析の具体例は? 具体例として、契約者の分析においては、契約時間帯や取引接点、折衝回数、前回の契約からの経過年数などの要素を考慮することが考えられます。また、ロジックツリーを活用し、契約率の改善を図ることができます。これにはリードの質を向上させるためのスコアリングや獲得チャネルの最適化のほか、営業プロセスとして初回アプローチの改善やフォローアップの最適化、営業担当者のスキル向上が含まれます。さらに、価値提案の強化として、パーソナライズされた提案の提供や他社との差別化も重要なポイントとなります。

マーケティング入門

顧客の真のニーズを見つけ出す方法とは?

顧客の真のニーズを探るには? 真のニーズは顧客自身が気づいていないことが多いため、メーカー側がそのニーズを深堀し、提示することがマーケティングにおいて重要であることを理解できました。ある企業の例では、コロナ禍という一見ピンチに見える場面でも、真のニーズを捉えることでマーケティングチャンスとして転換できることを学びました。これまでは、ビジネスチャンスが減少していると感じていましたが、カスタマージャーニーや身近な人へのインタビューを通じて、ペインポイントを見つける力を鍛えていきたいと思います。 ペインポイントの見つけ方は? 顧客の真のニーズやペインポイントを捉えることができれば、より納得感のある新商品提案が可能になります。また、それに対して必要となるシーズも見えてくるため、新技術開発の提案もやりやすくなります。さらに、自社の強みをよく把握し、それを活かすことで、差別化されたユニークな商品を考案することができます。 カスタマージャーニーの活用法 まずは自社商品に対してカスタマージャーニーを実践し、誰に対して、どのようなペインポイントを解消しているのかを分析したいと思います。また、その過程でさらなるペインポイントが見つけられた場合、それに対する解消策も考案していきます。その他、コンビニやスーパー等で販売されている自社業界の商品に対しても、どのようなニーズに応えた商品であるかを分析してみます。

マーケティング入門

「選択と集中で勝つ!ニーズ分析の極意」

セグメンテーションの重要性とは? 印象に残ったのは、セグメンテーションとターゲティングの部分でした。最初の講義でも触れた「誰に売るか?」という基本概念に通じますが、自分たちの魅力を一方的に押し付けるだけでなく、自分たちの強みを理解しつつ、どの人々にニーズがあるのかをしっかりと切り分ける必要があると感じました。不特定多数の顧客が市場に存在し、資源が限られている状況での「選択と集中」というフレーズが特に印象的でした。さらに、売り込む際には伝えたいことを2つに絞ることが重要で、その中で競合との差別化を図ることが大切だと学びました。 限られた資源でどう選択と集中を? この学びは、組織内での課題解決や顧客ニーズに応えるための企画立案に活用できると感じました。現在、資源が限られている中で顧客ニーズに極力応えていく必要があります。しかし、現状では選択と集中が十分できていないため、誰にどんな商品を提供するのが効果的で、そのためにどのように人的リソースや資源を投資するか考えることが重要だと考えています。 新たな思考法で提案をどう改善? 現在、多くの業務がBPOに近い形で進んでおり、複数の顧客ニーズに応えることが求められています。そこで、ニーズの重心を把握し、商品自体を変更することができない状況でも、新たな思考法を活かして、提案を文書や資料に反映し、効果的な提案ができるように努めていきたいと思います。

「分析 × 提案」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right