クリティカルシンキング入門

データ分析で視点を広げる新発見

加工と分解はどう? データ分析において、「加工」と「分解」を行うことで解像度が上がり、課題や原因究明につながることが分かりました。さらに、一つの加工や分解方法ではなく、複数の切り口を持つことで別の視点から見ることができ、新たな気づきを得られる点も印象に残りました。「迷ったときはまず分解してみる」ことで、前に進めることができるというのは非常に大きな発見です。ただ考えるだけでなく、加工や分解といった方法を用いて視覚でも考えることを進めていきたいと思います。MECEという概念は理解していたつもりでしたが、「全体を定義する」という視点が欠けていたことで、実際にはMECEになっていなかったと気づかされました。week1で学んだ内容を振り返りつつ、week2で得た気づきを定着させていきたいと感じています。 プロセスをどう見直す? 企画営業の立場として、入口から出口までのプロセスのどこに課題があるのかを分析し、打ち手を考えることが求められます。しかし、これまで分解の切り口が不足していたため、改めて入口から出口までの流れを見直し、どの部分で数字の変化があるのか、またその数字をどう分解できるのかを考え直したいと思います。自分自身、目の前の数字や事象に飛びつく癖があり、思考が浅いと感じるので、データの加工・分解を活用して視覚的にも情報を整理し、思考を広げていくことを意識していきます。また、グラフや表を用いることは、数字以外の業務でもバリューチェーンを理解するなどの方法として活用できると感じましたので、データに限らず、他の業務にも応用できるかを考えていきたいと思いました。 会議資料はどう作る? 直近の会議に向けて、最新の数字を用いた資料作成を行いたいと思います。入口から出口までで何が行われ、どこに課題があるのかを表やグラフで検証し、結果を反映させていきます。企画営業として、数字を日々扱い、その改善策やさらに数字を伸ばす施策の検討も業務の一部であるため、今回の学びを次回の会議から早速活かせるよう準備を進めていきたいと思います。

戦略思考入門

顧客を惹きつける差別化の探求

差別化のカギは? 今回の演習を通じて、「差別化」について三つの気づきを得ました。 顧客像ははっきり? まず一つ目は、ターゲット顧客を明確にする重要性です。顧客像を細かくイメージし、それに基づいて価値を提供しなければ、他社のやっていないことを考え出すことができたとしても、顧客に受け入れられるかどうかはわからず、無意味な施策に終わりかねません。 施策の継続は? 次に二つ目は、施策を考える際には顧客に提供する価値だけでなく、その施策が実現可能で継続可能かどうかを重視することです。どれほど優れた施策でも、時間やコストがかかりすぎるか、他社に簡単に模倣されるようであれば効果が持続しないため、取り組むべきではないと感じました。 考える順序は? 最後に三つ目は、物事を順序立てて考えることの重要性です。施策を考えることから始めるのではなく、まずは状況把握を行い、その後に顧客ターゲットの選定、最後に施策の検討へと進むべきだと気づきました。 現状の確認は? これらの気づきを踏まえ、今後は「現在の自分たちの状況は何か」という問いから始め、「ターゲットとなる顧客は誰なのか」「その顧客にどのような価値を提供するか」と考え、具体的なターゲットを定めて、そのために考えられる戦略を多角的に検討していきます。 営業戦略はどう? 今回の学びは、社内の営業戦略への理解を深めるためにも有用だと実感しました。現在、社内のコスト部門に所属しており、営業戦略については会社が用意する資料を読む程度ですが、これを機に自社がどのような差別化戦略を採用しているのか改めて分析し、自分の理解を深めることで、現場での取り組みが会社の営業戦略に合っているか確認していくつもりです。 中期戦略は探る? また、自社の中期経営戦略を見直し、どのような差別化戦略に取り組んでいるかを探ります。具体的には、VRIO分析を行い、自社の強みを感覚と一致するか確認します。その後、自部署が何を提供できるかを考えていきたいと思います。

データ・アナリティクス入門

挑む学び!仮説が広がる瞬間

課題と仮説の意義は? 今週は、課題設定と仮説構築の重要性について学び、サンプルデータを用いた実践を行いました。課題を具体的に明確化することで、その後の仮説の精度が向上することを実感しました。また、立てた仮説に固執せず、検証結果に応じて柔軟に視点を変えることの大切さにも気づかされました。仮説が立証されなかった場合には、別の原因を積極的に探る姿勢が求められます。 なぜ業務は偏る? 営業店の業務負荷にばらつきがある場合、単に「業務量が多い」という理由で負担が大きいと判断するのではなく、どの業務が集中しているのか、フローに非効率な点があるのか、人員配置に偏りがあるのかといった具体的な仮説を立てた上で、必要なデータを特定し検証することが重要です。仮説を基に、どのデータを取得し、どのようなグラフで可視化するかを事前に整理することで、分析の精度が高まります。たとえば、営業担当者ごとの業務時間の偏りを分析する際、移動時間の長さや業務の種類が要因となっているかを検証するために、ヒストグラムや散布図の活用が考えられます。 定量指標は何故大切? 課題設定の精度向上には、定量的な指標を明確にすることが不可欠です。業務負荷の偏りを評価する場合は、「1人あたりの業務処理件数」や「1件あたりの処理時間」を指標とし、営業成績の低迷については「訪問件数」や「折衝時間」、「成約率」を基に状況を把握します。現場の意見をヒアリングし、課題感を共有した上で、分析すべきデータを整理することで、的外れな分析を防ぐことができます。 現場の意見は鍵? また、仮説構築とデータ収集の精度を高めるためには、複数の仮説を立て、どの仮説が有力かを検証する手法が有効です。たとえば、「営業成績の低迷要因」として、訪問件数の不足、折衝時間の短さによる十分な説明ができていない、または高額商品の偏った営業活動といった仮説が考えられます。とりわけ、営業活動に関する領域知識が不足している状況では、現場からの意見を積極的に取り入れた仮説設定が必要だと感じました。

戦略思考入門

効率よくビジネスを進化させる秘訣

学びを通して得られた経済性の理解 ビジネスのメカニズムとして、様々な経済性について学びました。コスト低減策については、これまで100か0かという極端な判断をしがちでしたが、適切なスケールメリットを見つけることができるようになりたいと感じました。 SNSマーケティングの重要性とは? ネットワークの経済性も現代のビジネスには不可欠だと痛感しました。SNSを利用したマーケティングや広報活動は、企業がToCビジネスを展開する上で非常に有効です。特に、私のようなOver40のビジネスマンにとって、この方面への感度が今後のビジネスに重要だと危機感を覚えました。 人的資本と範囲の経済性 私の会社ではITサービス事業を行っており、「規模の経済性」はあまり当てはまりませんが、「範囲の経済性」については人的資本の活用が重要です。新たな業務やプロジェクトに人材を充てる「化学反応」という表現が社内でよく使われますが、うまくいかないケースもあります。組織編制では能力や経験以外にも、外向性などの要素を考慮することで人的シナジーを高める必要があると感じました。 習熟効果とイノベーションの必要性 自社の事業は習熟効果の曲線で見ると中盤に差し掛かっていると感じます。固定費や人件費が上昇する一方で、サービスの価格は据え置きもしくはディスカウント状態です。これにより、将来的にイノベーションが必要だと危機感を覚えました。 適切な価格設定への試算方法 自社事業について、必要な収益を試算したいと考えています。人件費や共通コストを正確にプライシングに反映させることで、適切な価格設定を見極めたいと思います。 継続的な学びの重要性 自身の業務や思考方法も常にアップデートを心がけています。日頃から学びの時間を取り入れ、講座終了後も復習を行いたいと思います。また、定期的に動画学習を取り組むことで、「知識のインプット」➡「自分の考えをアウトプット」➡「業務への置き換え」というサイクルを継続していきたいです。

戦略思考入門

戦略的思考で未来を描く秘訣

戦略ってどう考える? 戦略的思考とは、「ゴールを明確に設定し、現状からそのゴールまでの道のりを描き、最短でゴールを達成するために必要な行動を考えること」であると学びました。以前は、戦略的に考えることに対して難しさを感じ、苦手意識を持っていました。しかし、日々の生活の中でも、料理を作る場面や子供の世話をする場面で、実は戦略的に考えて行動していることに気付きました。これらの行動を振り返り、自分ができている部分にも目を向けることの重要性を実感しました。 ゴール設定はどうする? さらに、ゴールを明確にすることも大切だと学びました。大学受験の経験を通じて、自分が目標設定を近視眼的に捉えがちであることに気付きました。そのため、現在の行動が周囲からは先が見えず、納得感がないと感じさせてしまうこともあるのではないかと思います。これを改善するためには、目の前のことだけでなく、長期的な視野を持ち、ゴールを明確にしていくことが必要です。 技術活用はどう進める? 現在、私は社内コールセンターの運営を担当しています。これまでのようにマンパワーに頼るのではなく、新たなテクノロジーを活用してコストを削減しながら、サービスレベルを向上させることが求められています。この変化を実現するためには、メンバーに目指すべきゴールをイメージしてもらい、具体的な打ち手に納得してもらうことが重要です。戦略的思考を活かして、チーム戦略を策定する際にこれを活用していきたいと考えています。 チーム戦略をどう描く? まず、会社のゴールと社内コールセンターの関わりについて上司とすり合わせを行い、チームのゴールを明確に設定します。この際、ゴールがビジョンに基づき、かつ具体的で計測可能なSMARTな目標であることを意識します。次に、現状とゴールまでの道のりを描き、AIの活用やメンバーのスキルアップについて、目標達成のために何をいつまでに行うかを考えます。最後に、ゴールとその道のりをメンバーと共有し、共に方法を考えて実行し、ゴール達成を目指していきます。

クリティカルシンキング入門

相手の心を掴むグラフ・スライド作成方法を学ぶ

グラフ作成で気をつけることとは? 相手の立場に立ってグラフやスライドを作成することが重要です。以下が学んだポイントのまとめです。 まず、グラフに関して以下の点を注意しました。 1. グラフには慣例があるため、基本的なルールに従うことが重要です。突飛な見せ方よりも、一般的な方法をベースにすることが大切です。 2. 相手が見たときに、「違い」や「強調したい部分」が直感的に理解できるかどうかを確認することが必要です。 スライド作成の効果的な方法は? 次に、スライドについては以下の点に注意しました。 1. 端的に伝えたいことが伝わるかどうかを重視しました。文字の大きさや色の使い方も重要です。 2. 文字の色には連想される色があるため、意図がしっかり伝わる色を選ぶことが大切です。 文章力向上のための工夫は? さらに、文章力に関しては以下を学びました。 1. 文章には目的があり、その目的を明確にすることが重要です。 2. 読み手を意識して、誰に対して書いているのかを考える必要があります。 3. 内容自体も重要で、読んでもらえるかどうかを常に意識することが大切です。 特に、読んでもらうための工夫として以下の点に注意しました。 1. タイトルのアイキャッチは非常に大切です。 2. 読み手がイメージしやすい構成や言葉遣いを工夫することが重要です。 成果をどのように活かすか? また、学びを活かして社内報告用のプレゼン資料や、新幹部向けの研修プログラム作成に取り組みました。報告資料は多数の人が見るものですので、フィードバックを元に改良を繰り返していきます。 軸は「読み手が面白く、学びを行動に移したいと思える」ことを目指して、以下のことを行いました。 1. 実際に研修を実施して、5段階アンケートをMicrosoftフォームスで実施する。 2. その結果を定量的にデータ化し、フィードバックとして活用する。 以上のポイントを踏まえて、自分の仕事に役立つスライドや文章構成を意識して取り組んでいきます。

データ・アナリティクス入門

仮説の力で未来を切り拓く

学んだことは何? 「仮説の立て方」「データ収集の注意点」「仮説の種類の違い」を学びました。これまで、集計したデータから都合のよい部分だけを抜き出して仮説を組み立てる、という我流のやり方に限界を感じていました。 仮説立案のコツは? <仮説の立て方のポイント> ・複数の仮説を用意し、最初から一つに絞らない ・仮説同士に網羅性を持たせる データ収集の秘訣は? <データ収集の注意点> ・自らデータを取りに行き、仮説の立証に努める ・仮説に対する反論も排除できる情報の入手を心がける 仮説の違いはどう? <仮説の種類の違い> ・結論の仮説:ある論点に対する仮の答えを示す ・具体的な問題解決を目的とした仮説:分からない点に対する仮の答えを提供する 検証と説得はどう? これらを通じ、検証マインドや説得力、問題意識の向上、迅速な対応、そして行動の精度向上が期待できると実感しました。 海外動向は読める? また、海外顧客の所要動向を分析する際に今回の学びが大いに役立つと感じています。特定の顧客向けであれば、分析対象を絞って時系列で変化を追えばよいのですが、一般向けの製品の場合、市場全体の動向や地域性も踏まえつつ、複数の仮説を立て多くのデータを基に分析する必要があります。そのため、仮説のパターンを複数用意し、ノウハウとして蓄積していくことが非常に重要だと思います。 分析進捗は順調? 現在、顧客所要動向分析効率化のプロジェクトに参画しており、具体的なアクションとして以下の点を実施しようとしています。まず、カスタム品と汎用品それぞれに適した分析指標を設定します。次に、どの指標の変化が顧客所要に大きな影響を与えるのか、複数の仮説を立てながらデータを検証します。そして、仮説と異なる動きが見られた場合、もしくはどの仮説とも一致しない場合には、分析指標自体の見直しを行います。これらのアクションを月次で繰り返すことで、仮説のパターンを着実に蓄積し、分析の精度を高めていきたいと考えています。

データ・アナリティクス入門

仮説思考の極意を学ぶならコレ!

仮説を立てる重要性とは? 仮説を立てる際には、「複数の仮説を立てること」と「仮説の網羅性」が重要です。まず、仮説の立て方のポイントとして、「知識の幅を広げ、耕しておく」「ラフな仮説を作る」ことが挙げられます。知識の幅を広げるためには、「なぜ」を5回繰り返したり、別の観点や視点から見ることが重要です。これにより、あらゆる切り口での仮説立てができ、「複数の仮説を立てること」に繋がります。一見関係ない情報や常識はずれな仮説であっても、新しい事柄が見えてくる可能性があるため、発想を止めないことが大事です。 仮説検証の効果的な方法は? 次に、仮説を検証するポイントとして、「必要な検証の程度を見極める」「枠組みを考え、情報を集めて、分析する」「仮説を肉付けする、または再構築する」があります。例えば、3Cや4P、5つの力といったフレームワークを使い、必要な検証の程度を見極めます。その後、情報を集め、分析を行い、仮説と実際の結果が一致するかどうかを確認します。予想通りの結果でなければ、仮説の再構築を行います。 ターゲットを定めた企画立案のポイント 次に、キャンペーンの企画立案に関してです。現状としては、売上向上が目標ですが、ターゲットを定めずに漠然と企画立案を行っている状態です。これを改善するためには、ターゲティングを適切に行い、自社の強みを活かすような企画を実施することが重要です。また、プロモーションもターゲットに合わせて変化させる必要があります。 新規事業のターゲット特定はどう進める? 新規事業を行う際のターゲットの特定については、自社で持っているデータと一般的にオープンなデータを組み合わせることが有効です。さらに、アンケートなども活用して仮説を立てることが求められます。具体的なプロセスとしては、①顧客ニーズの推測と自社の課題の明確化、②仮説を立てる、③実際のデータを基にした分析やフレームワークの活用、④仮説が正しいか確認し再構築、⑤実運用、⑥立てた仮説が正しかったか効果検証、の順に進めていきます。

データ・アナリティクス入門

ロジックツリーで解決する新たな視点の探求

決定木と共通点は? ロジックツリーは問題解決に役立つと感じました。特に決定木と類似している点があることに気付きました。問題解決にはロジックツリーを利用し、業務フローを考えることは個人的に決定木のように解釈しています。「決定木」については、個別に確認を行ってみたいと考えています。 分解手法は何が違う? 層別分解については、粒度を揃えて階層毎に記載し、全体的な視点で考えることが重要だと感じました。変数分解では、細分化することで解決策を検討することが可能となります。 フロー分析は有効? 私は業務フロー分析を行い、RPA(自動化)のタスクを考えることがあります。問題解決プロセスを活用して、層別分解を業務フローに応用してみようとしています。 変数分解を深める? 変数分解は、利用頻度が低かったため、まだ理解が浅いと思います。すぐに実用できるアイデアは浮かびませんが、望む結果に至らなくても、試行錯誤を続けて活用できるよう努力したいです。 集計から何を探る? データ集計の結果を元に、ロジックツリーを用いて、漏れや重複をなくすだけでなく、別の観点での検証が可能かどうかを探りたいです。 KPI改善の鍵は? KPIのデータ集計結果において、乖離や数値の増減があった場合には、ロジックツリーを使って分析しています。MECEをベースに、問題解決に向けた改善活動に取り組んでいます。改善活動自体にもロジックツリーを適用してみることを考えています。 他チームの意見は? 他チームの分析結果にもロジックツリーを用いて、新しい視点が得られるかを検証したいです。他チームの報告を聞く際、通常は前提が正しいという説明を受けますが、その場で疑いを持っても、すぐに相違点を指摘するのは難しいです。 日常でどう活かす? 日常の業務において、データ分析以外にもロジックツリーを様々に適用し、考える習慣を試してみます。活用範囲を広げ、新たな気づきやスキルを獲得できればうれしいです。

クリティカルシンキング入門

数字の力を引き出す分析の秘訣

データ分析の重要性とは? データに基づいて原因を突き詰めていく際、数値を分解しグラフなどに視覚化することで、傾向が見えてくることがあります。さらに、その数値を分解していくことで、他者に説明する資料としても、表よりもグラフの方が一目瞭然です。 効果的な分解方法を探る 分解の方法としては、"いつ(when)"、"誰が(who)"、"どのように(how)"などがあります。博物館のワークでは外的要因に注目しましたが、そのものの数値自体も分解することが大切です。 発見を得るための試行錯誤が不可欠 切り口や切り方を変えて、いろいろ試してみると違った発見があるかもしれません。キリの良い数字でまとめるのではなく細かく刻むことで、見えてくることがあります。また、段階的に切り口を広げて掘り下げていくことで、新たな発見ができることもあります。様々なアプローチを用いて分析をする結果、データに説得力が生まれます。 分析のプロセスから何を学ぶか? 分析を進める中で、切り口や刻み方によって何も見えてこないこともありますが、それもまた意味のある結果だと言えます。このように色々な方法を試すことが重要です。 実際のデータで見る数字の力 私はあまり数字を扱う業務はありませんが、数字を分析することで見えてくるものがあります。例えば、製品群ごとの売上金額や粗利金額の月別、前年比の比較、契約件数と売上金額の関係性、契約金額と粗利益率の関係などを調べることができます。 優先すべき分析視点とは? これらのデータから、売上低調製品の原因や高粗利商品などの理由を探ることができます。月に一度、売上データを集計し分析を行い、そのデータを基にプレゼン資料を作成します。資料作成の際には、ファクターに基づき数字を視覚化することで説得力のある資料を作成します。 営業活動におけるデータ活用 また、自分の営業活動においてもアポイント数や進捗などを視覚化し、得意先や物件ごとの売上金額、粗利金額などをまとめています。

リーダーシップ・キャリアビジョン入門

リーダーシップの選択と挑戦

リーダー機能は整っていますか? リーダーシップとマネジメントの機能について、社内で何が整っていて、何が不足しているか、そして何ができているかできていないかを整理することができました。これにより、現状の把握が明確になりました。 誰にどう伝える? また、パス・ゴール理論を通じて、状況に応じて誰に何をどのように伝えるべきかがシンプルに理解できました。講義を受けたことで、各要因に基づいた具体的な行動計画が立てやすくなりました。 最適な行動は? 過去には状況に応じたリーダーシップの型をイメージして行動していましたが、その結果、逆にマイナスの影響を与えてしまった可能性もあると振り返りました。そのため、あの場面でどのような型の行動をとるべきだったのか、改めて考える大切な機会となりました。 改善策はどうなる? 今後、業務改善に向けたプロジェクトを二件進める予定です。メンバーの状況や外部の環境に合わせ、指示型と支援型のリーダーシップをうまく使い分けようと考えています。特に、一緒に業務を進めるメンバーが学生であるため、モチベーションの維持がリーダーシップにおいて重要なポイントになると仮説し、実施後に振り返りを行っていきたいと思います。 メンバーの位置は? また、業務を共に遂行するメンバーについては、マネジリアル・グリッド理論の視点からどの位置にあるかを想像し、適切なリーダーシップのスタイルを検討しました。その結果、週次ミーティングの中で目標達成や業務改善に向けた具体的な行動の合意、そして完了時期の確認を行っています。 遠隔管理の変化は? さらに、異なる拠点で業務をしているメンバーとのミーティングにも取り組んでいます。現在、遠隔でマネジメントを担当している二名のメンバーのうち、1名は最近復職したため、本来は支援型のリーダーシップが適していたはずですが、しばらくは指示型のリーダーシップを実践し、どのような変化が生じるかを観察しながら業務依頼を行いたいと考えています。

データ・アナリティクス入門

仮説思考が拓く学びの扉

仮説思考は何のため? 仮説思考は、効率的な分析を行うために欠かせない手法です。基本的なステップは、目的(問い)の把握、問いに対する仮説の設定、データの収集、そしてそのデータをもとに仮説を検証する、という四段階で構成されます。 どのデータを集める? データ収集の方法は大きく二つに分かれます。まず、既存のデータを集める方法として、検索エンジンや各種リサーチサイトを活用します。次に、まだ存在していないデータについては、実際に観察したり、有識者へのヒアリングやアンケートといった方法で収集を行います。 五視点はどう活かす? また、仮説思考を実施する際には、以下の五つの視点が重要です。インパクトではその影響力の大きさを、ギャップでは何がどのように異なるのかを捉えます。トレンドでは時間的な変化や変曲点、外れ値に注目し、ばらつきではデータの分布が偏っていないかを確認します。最後に、パターンの視点からは、法則性があるかどうかを見極めます。 グラフ化の手順は? グラフ化を行う場合には、次の三つのステップが有効です。まず、仮説や伝えたいメッセージを明確にし、次に比較対象を設定、そして適切なグラフを選んで情報を整理します。 経験が必要な理由は? 仮説思考については、これまでチームでの実践経験がないため、上司に相談しながら取り組むことが望まれます。一方、データ収集に関しては、企業独自の情報をうまく活用することで、新商品の開発に役立つ可能性があります。また、来月更新される免税施策に関しても、その対応方法を検討していく必要があります。 新規取り組みの課題は? 組織の一員として新たな取り組みを始めるのは容易ではありませんし、チーム全体が仮説思考の本質を正しく理解しているかどうかも不透明です。来週から開始されるデジタルのショッピングクーポンの運用にあたっては、まずデータ収集を行い、半年先や来年度の数字を分析する可能性を模索するものの、まずはデータ収集自体に時間を要する点が懸念されます。

「行い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right