データ・アナリティクス入門

実践で磨くA/Bテスト活用術

フレームワークの使い方は? 今週の講義は、具体的なフレームワークや分析手法を紹介するものではなかったものの、複数の視点を取り入れて考察する過程が印象的でした。仮説の立案や必要なデータの検討にあたってフレームワークを用いた結果、回答がしやすく感じられ、今後も折に触れて活用していきたいと思います。 データ活用はどう? また、ある指導者の思考方法に沿って考えることで、データ活用の体系的な流れが見えてきました。A/Bテストについては、アンケート作成のしやすさやデータ収集の容易さから非常に便利なツールだと感じました。先週のホテル宿泊客向けの設問、たとえば「食事か部屋か」という内容は、A/Bテストに最適な例だと思います。以前に似た分析を行った経験もあり、体系的に学んだことで活用の幅が広がったと実感しました。調査対象以外の条件を統一するという基本的な考え方も、以前学んだ内容を思い出させるもので、理解しやすかったです。さらに、同じ環境や条件下でランダム化を行うことで、精度の高いデータが得られる点にはしっかりと納得できました。 PDCAで進める秘訣は? A/Bテストは実施が簡単で、所定の時間内に複数回行えるため、PDCAサイクルを迅速に回しながら正解に近づける点が魅力的です。日常生活や業務での応用については現段階では明確ではありませんが、来月から本格的に業務が始まれば、積極的に活用していきたいと考えています。日常への適用はやや難しいと感じるものの、A/Bテストに類する試みが可能であれば、試してみたいと思います。また、今週はストーリー形式で原因追及を行う講義であったため、新しい手法としてのA/Bテストを講義内容に当てはめるのは少し難しく感じましたが、今後も機会があればどんどん利用していきたいです。 小さな失敗の学びは? 次回の業務では、ぜひA/Bテストを活用してみたいと思います。ある書籍で、成功の本質は致命的でない小さな失敗を積み重ね、そこから成功のカギを見出すことだと学んだこともあり、PDCAサイクルをより迅速に回すために、この手法を取り入れていくつもりです。今週の講義内容については、統計の視点からも改めて振り返り、深く学んでみたいと考えています。先週と今週のマーケティングに関連する講義や、過去に読んだ書籍を踏まえると、再び深く学んでみたい部分もありますが、やるべきことが増えているため、優先順位をつけながら学習していくつもりです。 AIに見抜かれた理由は? なお、Q1の回答で少し手を抜いたところ、すぐにAIに気付かれてしまい、驚きました。来週は引越しのためバタバタしそうですが、グループワークの課題がなかったのはありがたかったです。

戦略思考入門

新たな視点で未来を紡ぐ一歩

新手法はなぜ難しい? ライブ授業では、以下の三つの視点について考えさせられました。まず、新しい手法の採用が避けられる背景として、効率的に実行することが常識となっているため、あえて新しいフレームワークや方法を採用すると非効率になるのではないかという考えがある点です。 日常分析は大切? また、海外での日常生活に早く馴染むための施策として「日常生活」を分解し、分析する方法が有効であるという考え方も印象的でした。細かく分けて捉えることで、物事の本質が見えてくるという点は、実際の業務や生活においても役立ちそうです。 人生の問いは? さらに、人生を振り返る際の問いとして「どういう人になり、どのような人生を送りたいのか」を考える重要性にも気づかされました。一方で、ビジネスにおいては最速・最短で成果を出すことが理想とされるため、目的に応じたアプローチの違いを実感しました。 ショートカット活用? 新しい手法の採用が促進される例として、キー入力時のショートカットが挙げられます。一度覚えてしまえば生涯にわたって役立つにもかかわらず、普段使っていない人がいるのはもったいないと感じます。たとえば、コピー&ペーストのCtrl+CとCtrl+V、すべて選択のCtrl+Aなどは、使いこなせれば非常に効率的な操作です。しかし、自分自身にもなお、ページの先頭や末尾への移動、あるいは特定の機能(Excelのピボットテーブルなど)の利用に踏み切るのに時間がかかった経験があります。 変更の時間は? なぜ新しい手法への変更に時間がかかるのかをしっかり分析することは、他者へのアプローチ方法を見直すヒントになると感じました。日常生活や業務の中で、従来の方法を採用し続けることで非効率になっている事例は、意識して分析すべきテーマです。過去に学んだサブスクリプションサービスの事例やスイッチングコストの問題は、古い方法を見直す一つの参考になると思います。 伝統の維持は? 具体例としては、伝統的な元号表記の維持によって計算が煩雑になっている点、従来の町会活動における手法が、実際にはより効率的なデジタルツールに置き換えられる可能性、また紙媒体の利用が続いているために環境への負荷が無視できない点などが挙げられます。これらの例から、新しい手法への切り替えを検討する際には、変更することで誰が困るのかを考慮することが重要だと感じました。 非効率を見直す? 皆さんの日常や業務においても、従来のやり方をそのまま継承することにより非効率となっている事例があれば、ぜひ教えていただき、原因を掘り下げる材料にしていければと思います。

データ・アナリティクス入門

驚愕!データが暴く工芸品の現実

分析の続きは? 今回の振り返りでは、ライブ授業で行った分析の続きを実施し、8月の売上が大幅に落ちた原因を探りました。分析の目的は、売上減少の背景にある要因を明確にし、回復策を検討することでした。特に、4000円パッケージの工芸品が大人層やシニア層に十分に支持されなかった可能性に着目しました。 利用状況を探る? シニア利用者数(3パッケージ合計)は前年比で38%減少しており、大人の4000円パッケージ利用者は71%減少、一方で大人の6000円利用者は88%増加しています。これにより、大人層では4000円パッケージから6000円へのシフトが見られるのに対し、シニア層はどちらのパッケージも大幅に減少していることが明らかになりました。 アンケート結果は? アンケート結果からは、8月に工芸品が「気に入らなかった」と回答した人が45%に上り、7月以前の22%から大幅な増加が確認されました。また、「とても気に入った」と答えた人が73%減少しているため、工芸品への評価が売上減少の主要な要因であると結論づけられます。一方で、工芸品が気に入らなかったにもかかわらずパッケージを利用した利用者が45%存在することから、観光客としての「せっかく来たから何か作る」という心理を活かす改善策も検討に値すると考えられます。たとえば、現地の歴史に由来するデザインを採用して希少性や特別感を演出する方法が挙げられます。 パッケージの見直しは? 結論として、4000円および6000円のパッケージにおいては、大人向けの要素を維持しつつ、旅行の特別感を強調するデザインの見直しが必要であると考えます。 演習で気付いた点は? 今回、改めて当日の演習問題に取り組む中で、工芸品が気に入らなかったにもかかわらずパッケージを利用した利用者が45%もいたことに驚かされました。ライブ授業の際には気付かなかった点であり、データを通して自分では想定しなかった結果が得られる可能性を再認識しました。今後は、盲目的な結論に陥らず、広い視点から網羅的に仮説を立てることが重要だと感じています。また、今回の分析では「売上減少の原因究明とサービス改善」を主眼に置いたため、その目的から逸れないように注意することも大切だと実感しました。 年金負担の影響は? さらに、大人の利用者は4000円パッケージから6000円パッケージへのシフトが起きた一方で、シニア層は利用自体を減らしていることが明白です。物価上昇による年金生活者への負担が影響している可能性も考えられますが、ほかにどのような要因が考えられるか、皆さんのご意見を伺いたいと思います。

デザイン思考入門

会話から覗く隠れた顧客ニーズ

会話分析で隠れたニーズは? 定性分析について学んだ中で、CRMの管理者として、営業担当が顧客との面談で交わした会話内容をテキスト分析することで、隠れたニーズを発掘できるのではないかと考えました。一人ひとりの顧客に対し、営業担当自身がそのニーズに気づけるCRMシステムが理想です。しかし、そのシステムが効果を発揮するためには、まず営業担当のインタビュー能力を高め、会話内容を漏れなくテキストとして記録する仕組みが必要だと感じました。 研修でどう均てんする? インタビュー能力の均てん化は研修を通じて改善できると考え、記録については音声入力などのテクノロジーが一定の解決策を提供してくれるのではないかと思います。 セグメントの切り口は何? また、顧客のセグメンテーションは売上などの定量的な視点からだけでなく、定性分析を通じてこれまでとは異なる切り口で行える可能性があり、その各セグメントに対する最適な解決策を考えることができると感じました。このため、膨大なテキストデータのコーディング作業が非常に重要だと考え、AIの活用により効率的に対応できるのではないかと期待しています。 システム改善をどう確認する? システム導入については、すぐに実施するのは難しい状況ですが、リニューアルされた別のシステムが以前より使いやすくなったかどうかをチャットベースでのインタビューを通して確認する取り組みも行っています。ただし、単に「使いやすくなった」といった安易な回答に終始せず、具体的にどの点が改善され、どこに課題があるのかを掘り下げる質問をしていくことが重要だと考えています。たとえば、普段どのページにアクセスしているのか、そのページやデータへのアクセスが容易になったかを確認するなど、具体的な視点から質問を設定しています。 利用意義をどう問う? また、システム利用によって本来的に実現したいことに焦点を当てる必要性も感じました。問題点を問うのではなく、見たいデータへのアクセス手順が改善されたか、データがインサイトを得られるように可視化されているか、といった具体的な問いを設定するべきです。ざっくばらんに意見を募ると、後々コーディングして集約する際に混乱が生じる恐れがあります。 仮説構築の秘訣は何? 定量分析が仮説の検証を目的とするのに対し、定性分析は新たな仮説構築を目的とします。コーディングを通じてプロセスやフレームワークを構築することで、これまで想定しなかった要素も明らかになるでしょう。デザイン思考においては、仮説が広範囲になりすぎず、解決策ありきの課題設定を避けることが肝要だと感じました。

デザイン思考入門

対話が拓くプロトタイピング

試作で既視感感じる? 試作は、プロダクトデザインや建築プロジェクトで通常実施される工程であるため、どこか既視感を覚えました。また、WEBのインターフェイスデザインに見られる機械のスイッチパネルといったメタファーは、自身の専門分野に近いこともあり、非常に理解しやすいと感じました。 WEB手法は建築に合う? WEBデザインと同様のプロセスが、建築や施設管理運営のデザインにどのように応用できるのか、非常に興味深いと感じています。これまでの事例に照らし合わせ、応用の可能性を検討してみるとともに、自身の事務所のホームページのリニューアルにも活用する予定です。 建築手法は信頼できる? 建築業界で活用される開発手法は、長い歴史と多くの実践に裏打ちされているため、精度が高く実務にも適していると実感します。しかし、似た考えを持つ人々によって運用されるため、気づかぬうちに独自の進化を遂げる場合もあります。また、竣工後のオペレーションや保守管理におけるプロトタイピングについては、まだ標準化された手法が確立されていないのが現状です。 デジタル手法は革新的? 一方、デジタル分野ではアジャイルなど、他分野にも影響を与える新たな開発手法が続々と生まれており、今回学んだフレームワークも積極的に研究し、応用してみたいと思います。機会があれば、実際にデジタル業界で活躍されている方のお話も伺いたいと考えています。 評価の落とし穴は? プロトタイピングの課題として、専門家でないユーザーが成果物の内容よりも表現技術の巧拙に左右されやすい点が挙げられます。上手な絵、最新の機材を活用した表現、巧みな言葉遣い、さらにはアイデアの発案者の知名度や地位によって、ユーザーの評価が影響を受けることがあるのです。優れたプロダクトを生み出すためには、制作者自身も厳しい目線を持つユーザーとの協働が必要だと感じています。 プロトタイプの役割は? また、プロトタイプは単なる開発工程の一部に留まらず、ユーザーとの対話のためのメディアとして機能すること、さらには開発チーム内のコミュニケーションツールにもなることを改めて確認できました。 意味の共有はどう? こうしたポイントは理解しているつもりでも、実際の開発後半では、開発者のアイデアを強調するためのプレゼンテーションツールとして利用され、ユーザーや他のメンバーが十分に参画できなくなるケースも少なくありません。今後の開発プロセスでは、プロトタイプの本来の意味をチーム全体で共有し、全員が対話できる環境作りに注力したいと考えています。

データ・アナリティクス入門

数字だけじゃ見えない分解の力

なぜ全体では見えない? 今週のケーススタディでは、データ分析における分解とプロセスのステップ化の重要性を学びました。最初は全体の満足度を確認したときは横ばいで問題がないように見えたものの、クラス別に分解すると上級クラスでのみ満足度の低下が見受けられ、全体の数字だけでは特定の条件下で発生する問題を見逃す危険性があると実感しました。 コメントと数字の関係は? また、定量データと定性データの組み合わせによって数字の背景にある理由が明らかになる手法も印象的でした。充足率や苦情件数といった数字と生徒のコメントを照らし合わせることで、数字が示す事実に対するより深い理解が得られると感じました。 業務改善の分解法は? さらに、採用プロセスをステップごとに分解してボトルネックを把握する手法は、自分の業務に応用可能であると感じました。業務フローの各ステップの所要時間を可視化することで、改善が必要なポイントを明確にできると考えています。 仮説検証の効果は? 最後に、複数の仮説を立ててからデータで検証するアプローチが、問題解決の際に重要であると再認識しました。原因を一つに決めつけず、多角的に検討する姿勢は日々の業務においても活かしていきたいと思います。 エンジニア視点で何を学ぶ? 私はWebサービスの安定運用を担当するエンジニアとして働いています。今回学んだことは、システム障害の原因分析と業務プロセス改善の二つの場面で活用できると考えています。 障害原因はどこにある? まず、システム障害が発生した際には、全体のエラー率だけを確認するのではなく、機能別、時間帯別、利用者別など、複数の切り口でデータを分解して問題の発生箇所を特定することが重要です。また、利用者からの問い合わせ内容と数字を組み合わせることで、障害の背景にある理由を明確にすることができると実感しました。具体的には、障害時のチェックリストに分解の切り口を追加し、チーム全体で共有することで対応の質を向上させたいと考えています。 対応時間短縮は可能? 次に、障害対応にかかる時間短縮という課題に対しては、原因検知から初動対応、原因特定、復旧作業、再発防止策の検討といったステップに分解し、各プロセスの所要時間を記録してボトルネックを特定する手法が有効だと感じました。例えば、原因特定に時間がかかる場合は、調査情報の整理や手順書の見直しが必要であると考え、障害対応の記録フォーマットに各ステップの所要時間を記入する欄を追加し、データを蓄積して分析することで改善に役立てたいと思います。

クリティカルシンキング入門

思考の癖を乗り越える新習慣

思考の癖をどう克服する? 印象に残ったこと、また学びとして感じたことは三つあります。 まず一つ目は、「自他の思考には癖がある」という点です。人間の脳は経験や知識を基に、自分の考えやすいことを考える癖があります。これを解消するために必要なのがクリティカル・シンキングやロジカル・シンキングです。この思考の癖を修正するためには、深く考えることが重要です。「なぜやるのか?」「目的は何か?」といった問いを繰り返すことで物事の解像度が上がり、不確実性の高い状況でも正しい意思決定ができるようになります。 短期と長期のロジカルシンキングの違いは? 二つ目は、「ロジカルシンキングには短期と長期の2つの観点がある」ということです。短期的なロジカルシンキングは、会議やチャットでのコミュニケーションなど即時の対応が必要な場面で求められます。一方で、長期的には課題検証や市場調査のように時間をかけて取り組む事例があります。それぞれの性質に応じた思考の型を考慮する必要があります。 思考を行動に移す意味とは? 三つ目は、「考えるだけでなく行動しないと、ロジカルシンキングは身につかない」ということです。どれだけクリティカルな思考をしていても、それを他者と議論しなければ思考力は育ちません。議論を通して、自分の思考がどの程度正確か評価されます。また、多様な視点を持つためにも、他人のフィードバックを受けてさらに深めるプロセスが重要なのです。 思考法をどう実践で活用する? これらの思考法は様々な場面で活用できると感じています。例えば会議においては、参加者として会議のゴールや議論の意図を確認し、目的に沿った意見を発言することでより良い意思決定が可能になります。ファシリテーターの場合は、他の人の意見を深掘りし、整理することで、全員が納得する結論に導けると思います。 また、課題検証の場面でも役立ちます。クリティカルシンキングを身につけることで、与えられた課題を深く考え、その目的を明確にする行動が取れるようになります。そうすることで、課題を解いた時のインパクトを最大化することが可能です。 私自身も会議の場面では積極的に意見を述べることから始めていこうと思っています。幸いなことに、チームメンバーはフラットな議論を歓迎してくれるので、この環境を利用して思考を深めていくことを目指します。 課題検証の場面では、なぜ課題に取り組むのかをメンバーとすり合わせる作業を必ず実施したいです。課題の緊急性や重要度を明確にすることが、結果的に顧客の価値に繋がると信じています。

クリティカルシンキング入門

課題解決力がアップするクリティカルシンキング実践記

クリティカルシンキングの目的は? クリティカルシンキングに取り組む姿勢として、目的を常に意識することが重要です。何のために考えるのか、その理由を忘れないようにしましょう。また、自分自身の思考の癖を前提として、常に問い続ける姿勢が求められます。 会議や議論での活用法は? クリティカルシンキングとは、物事を適切な方法で適切なレベルまで考えることを指します。これにより、今まで気づかなかった発見や、見落としていた機会や脅威に気づくことが可能になります。さらに、相手の言いたいことや前提を適切に理解し、会議や議論でよりよい意思決定を行えるようになります。説得や交渉、コーチングにも有効です。 視点の切り替えが重要? 重要だと感じたポイントとして、主観と客観、具体と抽象を行き来して考えることが挙げられます。自他の思考の癖を前提に、考えに制限がかかっていないかを意識し、自分の考えを何度も批判することも重要です。また、視点、視座、視野を使い分け、ロジックツリーで情報を整理し、最初に視点を決めてから物事を考えることが推奨されます。 どんな実践的な利用例がある? 実践的な利用例として以下の点が挙げられます。 ①事業部戦略の策定 これまでの狭い視野から脱却し、多角的な戦略や具体的な計画を立てることができます。 ②課題解決 課題の洗い出しや整理、解決手法をクリティカルシンキングを用いることで、優先順位を高く取り組むべき課題や本質的な課題を見つけ、効果的な解決手法を導き出すことができます。 ③部下育成 部下の育成についてもクリティカルシンキングが有用です。必要な要素を洗い出し、具体的なキャリアパスを描くことで、明確かつ効果的な育成が可能となります。 ④会議や議論の場 クリティカルシンキングの考え方を取り入れることで、会議や議論を効率化し、クオリティを向上させることができます。目的の明確化と全員の思考の癖の理解を前提に、アウトプットをカテゴリ分けし整理することで、議論がスムーズに進むでしょう。 全社展開とその目的は? ⑤全社への落とし込み 学んだ知識を全社で共有し運用に乗せることで、組織全体のレベルを引き上げることが可能です。クリティカルシンキングをフォーマット化し、全社に展開することで、統一的な思考法を定着させることが目標です。 このように、クリティカルシンキングは多岐にわたる場面で効果を発揮する重要なスキルです。それを実際の業務や育成、会議に反映させることで組織全体の成長に寄与します。

データ・アナリティクス入門

仮説で拓く学びの道

分析の基本は何? 本資料は、分析を比較の視点から行い、仮説思考を持って問題に取り組むための考え方と手法を示しています。分析の要点として、プロセス、視点、アプローチの三つの軸が必要とされ、各軸が互いに補完しながら、より深い理解を促すことを意図しています。 プロセスをどう考える? プロセスでは、まず目的や問いを明確にし、その問いに対する仮説を立てます。次いで、データを収集し、分析によって仮説を検証するという流れが求められます。 視点と工夫は? 視点については、インパクト、ギャップ、トレンド、ばらつき、パターンといった観点からデータを捉え、それぞれの側面から情報を整理していきます。一方、アプローチでは、グラフ、数字、数式などを用いて、情報を視覚的かつ計量的に表現することで、理解しやすくする工夫が大切です。 可視化はどう? 比較のための可視化手法としては、データの特徴を一つの数字に集約する方法、グラフ化して目で捉える方法、そして数式に集約するアプローチがあります。これにより、データの持つ意味がより明確になります。 代表値は何? また、データを見やすくするためには、代表値と分布の確認が有効とされています。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、一方、ばらつきを見るためには標準偏差が活用されます。特に、95%のデータが含まれるという2SDルールは、分布の確認において重要な指標となります。 契約単価の意味は? 具体例として、【1】の契約単価の場面では、相加平均を用いた結果、受注率などの違いが十分に反映されず、平均値が大きく見えてしまうという事実が挙げられます。そのため、加重平均を用いることで、感覚に近い平均単価が算出できる可能性が示唆されます。 成長率はどう考える? また、【2】の成長率の場面では、合計の成長率を足して年数で割る方法が用いられていましたが、こちらは幾何平均を利用するアプローチが適切です。具体的には、(1+x)^2=◯年後の売上/スタート年の売上という考え方に基づく計算が求められます。 計算見直しは? これらの考え方を踏まえ、Q2では【1】と【2】の実際の計算を見直し、過去に作成したデータを再評価する行動を取る必要があります。また、平均値の計算方法一覧を見える場所に保存し、必要な際にすぐに確認できるようにすることで、定着した学習行動が実現されることが期待されます。

戦略思考入門

技術が拓く戦略の全体像

現在地とゴールは? これまで一週間ごとに学んできたフレームワークや概念が次第に結びつき、戦略思考の全体像が見えてきたと感じました。全体像を捉える過程では、まず自分の「現在地」を正確に把握し、目指すべき「ゴール」を明確に設定することが重要だと理解しました。 取捨選択の意義は? ゴールへの道筋では、学んだ差別化の手法を活用し、何を行い何を捨てるかという取捨選択が不可欠です。これらの判断やプロセスの根底には、市場の動向や事業の経済性―具体的には規模の経済性、範囲の経済性、ネットワーク経済性といった要素―を捉える視点があることを再認識しました。複数のフレームワークを駆使することで、一連の流れがより明確に整理されると感じています。 市場メカニズムは? また、市場のメカニズムを理解することは、競争の力学や自社の強み、そして新規参入の際の機会や障壁といった辺りについて、深い洞察を得る上で非常に意義あるものでした。こうした知識は、戦略立案の際の差別化や取捨選択の判断、さらには最終的なゴール設定に対しても、客観的で効果的な意思決定を下すための基盤となります。 技術は手段か? 一方で、エンジニアとして身につける技術や知識は、目的そのものではなく、ビジネスで何を成し遂げるかという目標に沿って活用するための「手段」に過ぎないと痛感しました。技術的に正しい選択が必ずしもビジネスとして最適とは限らず、市場環境や利用可能な資源という文脈の中でその真価が引き出されるのだと感じます。 技術と目的の調和は? 今後は、「技術はあくまで手段である」という視点を持ちつつ、利益創出やコスト最適化などのビジネス上の目的と技術的取り組みとのバランスを意識していきたいと思います。エンジニアとして専門性を高めるために、さらなる技術習得や知識の深化に努め、多様なフレームワークを駆使して問題解決や価値創造に寄与できるよう、着実に「手札」を増やしていきます。 利益構造の理解は? また、自社の利益構造や業界全体の動向、市場のメカニズムをより深く分析することで、技術や知識がどの場面で最大の効果を発揮できるかを見極め、その「ビジネスの文脈」を正確に理解していくことも大切であると感じました。 学びをどう活かす? これらの学びを基に、具体的なビジネス課題や目指すべきゴールに対して、最適な技術と知識を適切なタイミングで選択し、実際の行動に移すことで、事業に主体的に貢献していけると確信しています。

データ・アナリティクス入門

比較が拓くデータの新常識

データ比較はどう進める? 分析の基本原則は「比較」であり、まずはデータを比較する目的に立ち返ることが大切だと感じました。データ収集の前に仮説を設定し、その仮説を検証していくプロセスの中で、データをどのように加工して示すかという点が今回の学びのポイントでした。加工の視点としては、大きく代表値と散らばりの2つに分けられ、代表値には単純平均、加重平均、幾何平均、中央値があること、そして散らばりについては標準偏差で表現されることを学びました。 外れ値の対応はどうする? 今までは単純平均しか扱ったことがなく、重みを考慮した平均やべき乗を利用した手法は初めて触れる内容でした。また、平均値だけでは捉えきれない外れ値に対しては中央値を用いることで対応する方法がある点も新鮮でした。標準偏差については、なぜルートがつくのかという計算過程が理解でき、正規分布の場合にデータの約95%が±2個分の範囲に収まるという納得感を得ることができました。これまで平均を取るだけで思考が止まってしまっていた部分を、散らばりの視点からデータ活用の具体的なイメージに結び付けることができました。 移住データで何が見える? また、人口減少対策において活用される移住者データを分析することへの関心が高まりました。各市町村の移住者データを様々な属性で分析し、特に年齢や家族構成の散らばりを調べることで、どの施策に注力すべきかを推測するひとつの手法となり得ると感じています。現状、移住促進施策はUターン促進とIターン促進の大別がなされており、例えばUターンでは地元を想う集まりの取り組みを強化し、Iターンではボランティアや副業などにより継続的な関わりを持つ関係人口への支援を強化するという方針です。こうした大まかな区分に加え、より具体的な属性の分析が進むことで、移住理由を数値的に捉え、具体的な施策検討に役立てることができそうです。 今後の分析計画は? 今後は、所管部署に対して詳細な個別データの入手が可能かどうか問い合わせる予定です。データが手に入れば、エクセルを用いた分析に取り組みたいと思っています。特に県全体と沿岸地域の違いを明らかにすることで、一緒に施策を進める市町村の担当者や移住コーディネーターの方々の取り組みにも影響を与えられるのではないかと感じています。5月20日(火)に、所管部署の担当者が意見交換に来訪する予定のため、その際にデータ入手の依頼を進めるつもりです。

データ・アナリティクス入門

グラフと平均値で掴む分析術のコツ

グラフは何を示す? グラフの活用法とその分析時の手法について考えます。まず、円グラフは各要素の割合を確認したい場合に使用します。一方、ヒストグラムは全体のばらつきを視覚的に把握したい時に便利です。グラフを活用する際は、事前に仮説を立て、その仮説に基づいて予測データと実際のデータを比較し、深堀することが重要です。 平均値はどう使う? 分析手法としては、様々な平均値があります。単純平均はただ平均値を求める方法です。加重平均は重みを考慮して算出され、例えば東証株価指数がこの方法を用いています。幾何平均は成長率や平均何倍になるかを知りたい時に使用されます。外れ値の影響を避けたい場合は中央値を用いるとよいでしょう。また、標準偏差を利用することで、データのばらつきを把握できます。標準偏差が小さいほどデータは均一であることを示します。これに基づき、2SDルールでは95%のデータが大よその範囲内に収まるとし、5%のデータは外れ値とされます。 リスクはどう把握? 施設のポテンシャルや価格の分布を分析する際には、ヒストグラムや散布図を使うことで、戦略に対するリスクを特定できます。例えば、ポテンシャルの高い施設で高コストの外れ値がある場合、戦略的値下げの必要性を検討する余地があります。また、小さい施設で安価なコストの外れ値はベンチマークとして他施設に引き合いに出されるリスクとなる可能性があります。 医療データの精度は? 医療機器のデータ精度を分析する際、標準偏差を利用して精度の精確性を確認することができます。業界の標準として、変動係数CVが2%以下であれば精度の担保がされているとされています。変動係数は標準偏差を平均値で割ることで算出されますので、まず標準偏差を求める必要があります。特に機器の精度が外れ値を持たず、許容範囲内に収まることが求められるため、標準偏差の知識は重要です。 適正価格はどう算出? 価格交渉の際、統一グループやGPO施設カテゴリ内の平均価格やベンチマークの引き合いがあります。この際、どの「平均」が使用されているかを確認し、データを鵜呑みにせず、グラフや散布図、加重平均や中央値を用いて適正価格を示すことが重要です。 仮説はどこから? 最後に、分析に取り掛かる前に仮説を立てることが大切です。仮説に正解はありませんが、経験に基づいた想像力を活かし、いくつも仮説を洗い出すことが有益です。
AIコーチング導線バナー

「利用 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right