戦略思考入門

新たな視点で未来を紡ぐ一歩

新手法はなぜ難しい? ライブ授業では、以下の三つの視点について考えさせられました。まず、新しい手法の採用が避けられる背景として、効率的に実行することが常識となっているため、あえて新しいフレームワークや方法を採用すると非効率になるのではないかという考えがある点です。 日常分析は大切? また、海外での日常生活に早く馴染むための施策として「日常生活」を分解し、分析する方法が有効であるという考え方も印象的でした。細かく分けて捉えることで、物事の本質が見えてくるという点は、実際の業務や生活においても役立ちそうです。 人生の問いは? さらに、人生を振り返る際の問いとして「どういう人になり、どのような人生を送りたいのか」を考える重要性にも気づかされました。一方で、ビジネスにおいては最速・最短で成果を出すことが理想とされるため、目的に応じたアプローチの違いを実感しました。 ショートカット活用? 新しい手法の採用が促進される例として、キー入力時のショートカットが挙げられます。一度覚えてしまえば生涯にわたって役立つにもかかわらず、普段使っていない人がいるのはもったいないと感じます。たとえば、コピー&ペーストのCtrl+CとCtrl+V、すべて選択のCtrl+Aなどは、使いこなせれば非常に効率的な操作です。しかし、自分自身にもなお、ページの先頭や末尾への移動、あるいは特定の機能(Excelのピボットテーブルなど)の利用に踏み切るのに時間がかかった経験があります。 変更の時間は? なぜ新しい手法への変更に時間がかかるのかをしっかり分析することは、他者へのアプローチ方法を見直すヒントになると感じました。日常生活や業務の中で、従来の方法を採用し続けることで非効率になっている事例は、意識して分析すべきテーマです。過去に学んだサブスクリプションサービスの事例やスイッチングコストの問題は、古い方法を見直す一つの参考になると思います。 伝統の維持は? 具体例としては、伝統的な元号表記の維持によって計算が煩雑になっている点、従来の町会活動における手法が、実際にはより効率的なデジタルツールに置き換えられる可能性、また紙媒体の利用が続いているために環境への負荷が無視できない点などが挙げられます。これらの例から、新しい手法への切り替えを検討する際には、変更することで誰が困るのかを考慮することが重要だと感じました。 非効率を見直す? 皆さんの日常や業務においても、従来のやり方をそのまま継承することにより非効率となっている事例があれば、ぜひ教えていただき、原因を掘り下げる材料にしていければと思います。

デザイン思考入門

会話から覗く隠れた顧客ニーズ

会話分析で隠れたニーズは? 定性分析について学んだ中で、CRMの管理者として、営業担当が顧客との面談で交わした会話内容をテキスト分析することで、隠れたニーズを発掘できるのではないかと考えました。一人ひとりの顧客に対し、営業担当自身がそのニーズに気づけるCRMシステムが理想です。しかし、そのシステムが効果を発揮するためには、まず営業担当のインタビュー能力を高め、会話内容を漏れなくテキストとして記録する仕組みが必要だと感じました。 研修でどう均てんする? インタビュー能力の均てん化は研修を通じて改善できると考え、記録については音声入力などのテクノロジーが一定の解決策を提供してくれるのではないかと思います。 セグメントの切り口は何? また、顧客のセグメンテーションは売上などの定量的な視点からだけでなく、定性分析を通じてこれまでとは異なる切り口で行える可能性があり、その各セグメントに対する最適な解決策を考えることができると感じました。このため、膨大なテキストデータのコーディング作業が非常に重要だと考え、AIの活用により効率的に対応できるのではないかと期待しています。 システム改善をどう確認する? システム導入については、すぐに実施するのは難しい状況ですが、リニューアルされた別のシステムが以前より使いやすくなったかどうかをチャットベースでのインタビューを通して確認する取り組みも行っています。ただし、単に「使いやすくなった」といった安易な回答に終始せず、具体的にどの点が改善され、どこに課題があるのかを掘り下げる質問をしていくことが重要だと考えています。たとえば、普段どのページにアクセスしているのか、そのページやデータへのアクセスが容易になったかを確認するなど、具体的な視点から質問を設定しています。 利用意義をどう問う? また、システム利用によって本来的に実現したいことに焦点を当てる必要性も感じました。問題点を問うのではなく、見たいデータへのアクセス手順が改善されたか、データがインサイトを得られるように可視化されているか、といった具体的な問いを設定するべきです。ざっくばらんに意見を募ると、後々コーディングして集約する際に混乱が生じる恐れがあります。 仮説構築の秘訣は何? 定量分析が仮説の検証を目的とするのに対し、定性分析は新たな仮説構築を目的とします。コーディングを通じてプロセスやフレームワークを構築することで、これまで想定しなかった要素も明らかになるでしょう。デザイン思考においては、仮説が広範囲になりすぎず、解決策ありきの課題設定を避けることが肝要だと感じました。

デザイン思考入門

対話が拓くプロトタイピング

試作で既視感感じる? 試作は、プロダクトデザインや建築プロジェクトで通常実施される工程であるため、どこか既視感を覚えました。また、WEBのインターフェイスデザインに見られる機械のスイッチパネルといったメタファーは、自身の専門分野に近いこともあり、非常に理解しやすいと感じました。 WEB手法は建築に合う? WEBデザインと同様のプロセスが、建築や施設管理運営のデザインにどのように応用できるのか、非常に興味深いと感じています。これまでの事例に照らし合わせ、応用の可能性を検討してみるとともに、自身の事務所のホームページのリニューアルにも活用する予定です。 建築手法は信頼できる? 建築業界で活用される開発手法は、長い歴史と多くの実践に裏打ちされているため、精度が高く実務にも適していると実感します。しかし、似た考えを持つ人々によって運用されるため、気づかぬうちに独自の進化を遂げる場合もあります。また、竣工後のオペレーションや保守管理におけるプロトタイピングについては、まだ標準化された手法が確立されていないのが現状です。 デジタル手法は革新的? 一方、デジタル分野ではアジャイルなど、他分野にも影響を与える新たな開発手法が続々と生まれており、今回学んだフレームワークも積極的に研究し、応用してみたいと思います。機会があれば、実際にデジタル業界で活躍されている方のお話も伺いたいと考えています。 評価の落とし穴は? プロトタイピングの課題として、専門家でないユーザーが成果物の内容よりも表現技術の巧拙に左右されやすい点が挙げられます。上手な絵、最新の機材を活用した表現、巧みな言葉遣い、さらにはアイデアの発案者の知名度や地位によって、ユーザーの評価が影響を受けることがあるのです。優れたプロダクトを生み出すためには、制作者自身も厳しい目線を持つユーザーとの協働が必要だと感じています。 プロトタイプの役割は? また、プロトタイプは単なる開発工程の一部に留まらず、ユーザーとの対話のためのメディアとして機能すること、さらには開発チーム内のコミュニケーションツールにもなることを改めて確認できました。 意味の共有はどう? こうしたポイントは理解しているつもりでも、実際の開発後半では、開発者のアイデアを強調するためのプレゼンテーションツールとして利用され、ユーザーや他のメンバーが十分に参画できなくなるケースも少なくありません。今後の開発プロセスでは、プロトタイプの本来の意味をチーム全体で共有し、全員が対話できる環境作りに注力したいと考えています。

クリティカルシンキング入門

思考の癖を乗り越える新習慣

思考の癖をどう克服する? 印象に残ったこと、また学びとして感じたことは三つあります。 まず一つ目は、「自他の思考には癖がある」という点です。人間の脳は経験や知識を基に、自分の考えやすいことを考える癖があります。これを解消するために必要なのがクリティカル・シンキングやロジカル・シンキングです。この思考の癖を修正するためには、深く考えることが重要です。「なぜやるのか?」「目的は何か?」といった問いを繰り返すことで物事の解像度が上がり、不確実性の高い状況でも正しい意思決定ができるようになります。 短期と長期のロジカルシンキングの違いは? 二つ目は、「ロジカルシンキングには短期と長期の2つの観点がある」ということです。短期的なロジカルシンキングは、会議やチャットでのコミュニケーションなど即時の対応が必要な場面で求められます。一方で、長期的には課題検証や市場調査のように時間をかけて取り組む事例があります。それぞれの性質に応じた思考の型を考慮する必要があります。 思考を行動に移す意味とは? 三つ目は、「考えるだけでなく行動しないと、ロジカルシンキングは身につかない」ということです。どれだけクリティカルな思考をしていても、それを他者と議論しなければ思考力は育ちません。議論を通して、自分の思考がどの程度正確か評価されます。また、多様な視点を持つためにも、他人のフィードバックを受けてさらに深めるプロセスが重要なのです。 思考法をどう実践で活用する? これらの思考法は様々な場面で活用できると感じています。例えば会議においては、参加者として会議のゴールや議論の意図を確認し、目的に沿った意見を発言することでより良い意思決定が可能になります。ファシリテーターの場合は、他の人の意見を深掘りし、整理することで、全員が納得する結論に導けると思います。 また、課題検証の場面でも役立ちます。クリティカルシンキングを身につけることで、与えられた課題を深く考え、その目的を明確にする行動が取れるようになります。そうすることで、課題を解いた時のインパクトを最大化することが可能です。 私自身も会議の場面では積極的に意見を述べることから始めていこうと思っています。幸いなことに、チームメンバーはフラットな議論を歓迎してくれるので、この環境を利用して思考を深めていくことを目指します。 課題検証の場面では、なぜ課題に取り組むのかをメンバーとすり合わせる作業を必ず実施したいです。課題の緊急性や重要度を明確にすることが、結果的に顧客の価値に繋がると信じています。

クリティカルシンキング入門

課題解決力がアップするクリティカルシンキング実践記

クリティカルシンキングの目的は? クリティカルシンキングに取り組む姿勢として、目的を常に意識することが重要です。何のために考えるのか、その理由を忘れないようにしましょう。また、自分自身の思考の癖を前提として、常に問い続ける姿勢が求められます。 会議や議論での活用法は? クリティカルシンキングとは、物事を適切な方法で適切なレベルまで考えることを指します。これにより、今まで気づかなかった発見や、見落としていた機会や脅威に気づくことが可能になります。さらに、相手の言いたいことや前提を適切に理解し、会議や議論でよりよい意思決定を行えるようになります。説得や交渉、コーチングにも有効です。 視点の切り替えが重要? 重要だと感じたポイントとして、主観と客観、具体と抽象を行き来して考えることが挙げられます。自他の思考の癖を前提に、考えに制限がかかっていないかを意識し、自分の考えを何度も批判することも重要です。また、視点、視座、視野を使い分け、ロジックツリーで情報を整理し、最初に視点を決めてから物事を考えることが推奨されます。 どんな実践的な利用例がある? 実践的な利用例として以下の点が挙げられます。 ①事業部戦略の策定 これまでの狭い視野から脱却し、多角的な戦略や具体的な計画を立てることができます。 ②課題解決 課題の洗い出しや整理、解決手法をクリティカルシンキングを用いることで、優先順位を高く取り組むべき課題や本質的な課題を見つけ、効果的な解決手法を導き出すことができます。 ③部下育成 部下の育成についてもクリティカルシンキングが有用です。必要な要素を洗い出し、具体的なキャリアパスを描くことで、明確かつ効果的な育成が可能となります。 ④会議や議論の場 クリティカルシンキングの考え方を取り入れることで、会議や議論を効率化し、クオリティを向上させることができます。目的の明確化と全員の思考の癖の理解を前提に、アウトプットをカテゴリ分けし整理することで、議論がスムーズに進むでしょう。 全社展開とその目的は? ⑤全社への落とし込み 学んだ知識を全社で共有し運用に乗せることで、組織全体のレベルを引き上げることが可能です。クリティカルシンキングをフォーマット化し、全社に展開することで、統一的な思考法を定着させることが目標です。 このように、クリティカルシンキングは多岐にわたる場面で効果を発揮する重要なスキルです。それを実際の業務や育成、会議に反映させることで組織全体の成長に寄与します。

データ・アナリティクス入門

仮説で拓く学びの道

分析の基本は何? 本資料は、分析を比較の視点から行い、仮説思考を持って問題に取り組むための考え方と手法を示しています。分析の要点として、プロセス、視点、アプローチの三つの軸が必要とされ、各軸が互いに補完しながら、より深い理解を促すことを意図しています。 プロセスをどう考える? プロセスでは、まず目的や問いを明確にし、その問いに対する仮説を立てます。次いで、データを収集し、分析によって仮説を検証するという流れが求められます。 視点と工夫は? 視点については、インパクト、ギャップ、トレンド、ばらつき、パターンといった観点からデータを捉え、それぞれの側面から情報を整理していきます。一方、アプローチでは、グラフ、数字、数式などを用いて、情報を視覚的かつ計量的に表現することで、理解しやすくする工夫が大切です。 可視化はどう? 比較のための可視化手法としては、データの特徴を一つの数字に集約する方法、グラフ化して目で捉える方法、そして数式に集約するアプローチがあります。これにより、データの持つ意味がより明確になります。 代表値は何? また、データを見やすくするためには、代表値と分布の確認が有効とされています。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、一方、ばらつきを見るためには標準偏差が活用されます。特に、95%のデータが含まれるという2SDルールは、分布の確認において重要な指標となります。 契約単価の意味は? 具体例として、【1】の契約単価の場面では、相加平均を用いた結果、受注率などの違いが十分に反映されず、平均値が大きく見えてしまうという事実が挙げられます。そのため、加重平均を用いることで、感覚に近い平均単価が算出できる可能性が示唆されます。 成長率はどう考える? また、【2】の成長率の場面では、合計の成長率を足して年数で割る方法が用いられていましたが、こちらは幾何平均を利用するアプローチが適切です。具体的には、(1+x)^2=◯年後の売上/スタート年の売上という考え方に基づく計算が求められます。 計算見直しは? これらの考え方を踏まえ、Q2では【1】と【2】の実際の計算を見直し、過去に作成したデータを再評価する行動を取る必要があります。また、平均値の計算方法一覧を見える場所に保存し、必要な際にすぐに確認できるようにすることで、定着した学習行動が実現されることが期待されます。

戦略思考入門

技術が拓く戦略の全体像

現在地とゴールは? これまで一週間ごとに学んできたフレームワークや概念が次第に結びつき、戦略思考の全体像が見えてきたと感じました。全体像を捉える過程では、まず自分の「現在地」を正確に把握し、目指すべき「ゴール」を明確に設定することが重要だと理解しました。 取捨選択の意義は? ゴールへの道筋では、学んだ差別化の手法を活用し、何を行い何を捨てるかという取捨選択が不可欠です。これらの判断やプロセスの根底には、市場の動向や事業の経済性―具体的には規模の経済性、範囲の経済性、ネットワーク経済性といった要素―を捉える視点があることを再認識しました。複数のフレームワークを駆使することで、一連の流れがより明確に整理されると感じています。 市場メカニズムは? また、市場のメカニズムを理解することは、競争の力学や自社の強み、そして新規参入の際の機会や障壁といった辺りについて、深い洞察を得る上で非常に意義あるものでした。こうした知識は、戦略立案の際の差別化や取捨選択の判断、さらには最終的なゴール設定に対しても、客観的で効果的な意思決定を下すための基盤となります。 技術は手段か? 一方で、エンジニアとして身につける技術や知識は、目的そのものではなく、ビジネスで何を成し遂げるかという目標に沿って活用するための「手段」に過ぎないと痛感しました。技術的に正しい選択が必ずしもビジネスとして最適とは限らず、市場環境や利用可能な資源という文脈の中でその真価が引き出されるのだと感じます。 技術と目的の調和は? 今後は、「技術はあくまで手段である」という視点を持ちつつ、利益創出やコスト最適化などのビジネス上の目的と技術的取り組みとのバランスを意識していきたいと思います。エンジニアとして専門性を高めるために、さらなる技術習得や知識の深化に努め、多様なフレームワークを駆使して問題解決や価値創造に寄与できるよう、着実に「手札」を増やしていきます。 利益構造の理解は? また、自社の利益構造や業界全体の動向、市場のメカニズムをより深く分析することで、技術や知識がどの場面で最大の効果を発揮できるかを見極め、その「ビジネスの文脈」を正確に理解していくことも大切であると感じました。 学びをどう活かす? これらの学びを基に、具体的なビジネス課題や目指すべきゴールに対して、最適な技術と知識を適切なタイミングで選択し、実際の行動に移すことで、事業に主体的に貢献していけると確信しています。

データ・アナリティクス入門

比較が拓くデータの新常識

データ比較はどう進める? 分析の基本原則は「比較」であり、まずはデータを比較する目的に立ち返ることが大切だと感じました。データ収集の前に仮説を設定し、その仮説を検証していくプロセスの中で、データをどのように加工して示すかという点が今回の学びのポイントでした。加工の視点としては、大きく代表値と散らばりの2つに分けられ、代表値には単純平均、加重平均、幾何平均、中央値があること、そして散らばりについては標準偏差で表現されることを学びました。 外れ値の対応はどうする? 今までは単純平均しか扱ったことがなく、重みを考慮した平均やべき乗を利用した手法は初めて触れる内容でした。また、平均値だけでは捉えきれない外れ値に対しては中央値を用いることで対応する方法がある点も新鮮でした。標準偏差については、なぜルートがつくのかという計算過程が理解でき、正規分布の場合にデータの約95%が±2個分の範囲に収まるという納得感を得ることができました。これまで平均を取るだけで思考が止まってしまっていた部分を、散らばりの視点からデータ活用の具体的なイメージに結び付けることができました。 移住データで何が見える? また、人口減少対策において活用される移住者データを分析することへの関心が高まりました。各市町村の移住者データを様々な属性で分析し、特に年齢や家族構成の散らばりを調べることで、どの施策に注力すべきかを推測するひとつの手法となり得ると感じています。現状、移住促進施策はUターン促進とIターン促進の大別がなされており、例えばUターンでは地元を想う集まりの取り組みを強化し、Iターンではボランティアや副業などにより継続的な関わりを持つ関係人口への支援を強化するという方針です。こうした大まかな区分に加え、より具体的な属性の分析が進むことで、移住理由を数値的に捉え、具体的な施策検討に役立てることができそうです。 今後の分析計画は? 今後は、所管部署に対して詳細な個別データの入手が可能かどうか問い合わせる予定です。データが手に入れば、エクセルを用いた分析に取り組みたいと思っています。特に県全体と沿岸地域の違いを明らかにすることで、一緒に施策を進める市町村の担当者や移住コーディネーターの方々の取り組みにも影響を与えられるのではないかと感じています。5月20日(火)に、所管部署の担当者が意見交換に来訪する予定のため、その際にデータ入手の依頼を進めるつもりです。

データ・アナリティクス入門

グラフと平均値で掴む分析術のコツ

グラフは何を示す? グラフの活用法とその分析時の手法について考えます。まず、円グラフは各要素の割合を確認したい場合に使用します。一方、ヒストグラムは全体のばらつきを視覚的に把握したい時に便利です。グラフを活用する際は、事前に仮説を立て、その仮説に基づいて予測データと実際のデータを比較し、深堀することが重要です。 平均値はどう使う? 分析手法としては、様々な平均値があります。単純平均はただ平均値を求める方法です。加重平均は重みを考慮して算出され、例えば東証株価指数がこの方法を用いています。幾何平均は成長率や平均何倍になるかを知りたい時に使用されます。外れ値の影響を避けたい場合は中央値を用いるとよいでしょう。また、標準偏差を利用することで、データのばらつきを把握できます。標準偏差が小さいほどデータは均一であることを示します。これに基づき、2SDルールでは95%のデータが大よその範囲内に収まるとし、5%のデータは外れ値とされます。 リスクはどう把握? 施設のポテンシャルや価格の分布を分析する際には、ヒストグラムや散布図を使うことで、戦略に対するリスクを特定できます。例えば、ポテンシャルの高い施設で高コストの外れ値がある場合、戦略的値下げの必要性を検討する余地があります。また、小さい施設で安価なコストの外れ値はベンチマークとして他施設に引き合いに出されるリスクとなる可能性があります。 医療データの精度は? 医療機器のデータ精度を分析する際、標準偏差を利用して精度の精確性を確認することができます。業界の標準として、変動係数CVが2%以下であれば精度の担保がされているとされています。変動係数は標準偏差を平均値で割ることで算出されますので、まず標準偏差を求める必要があります。特に機器の精度が外れ値を持たず、許容範囲内に収まることが求められるため、標準偏差の知識は重要です。 適正価格はどう算出? 価格交渉の際、統一グループやGPO施設カテゴリ内の平均価格やベンチマークの引き合いがあります。この際、どの「平均」が使用されているかを確認し、データを鵜呑みにせず、グラフや散布図、加重平均や中央値を用いて適正価格を示すことが重要です。 仮説はどこから? 最後に、分析に取り掛かる前に仮説を立てることが大切です。仮説に正解はありませんが、経験に基づいた想像力を活かし、いくつも仮説を洗い出すことが有益です。

データ・アナリティクス入門

データで掴む!プロダクト成長の鍵

定量分析の重要性は? 目的を明確に持つことや分析が本質的に比較であることを改めて理解し、以下の観点で新たな気づきを得ました。まず、定量分析の重要性です。適切な比較を行うためには、目の前の事象やデータだけでなく、「Aがない場合」といった事象の背景も考慮に入れ、比較対象を慎重に選定する必要があります。また、仮説を立てることで分析の精度を上げることができると感じました。 アプリ戦略と仮説の関係 現在、私はアプリのプロダクトマネージャーとして、プロダクト企画や戦略立案を担当しています。また、自社事業でアプリやプロダクトを使って事業成長戦略を描くというミッションを追っています。市場データや競合比較、ユーザーの売上データ等を用いて仮説を立て、精度の高い分析を目指しています。この手法は仮説の精度を向上させるための手段となり得ると思います。 ユーザーのペインとは? 分析が役立つと考えられる場面は以下の通りです。まず、ユーザーのペインがどのような数字に表れているかについてです。特に、弊社のヘルスケアアプリにおいて、ユーザー記録データの推移と一般的な健康データを比較し、特定のセグメントにおけるペインを特定できる可能性があります。また、国内外の市場比較から次世代市場の動きや外資企業の動向予測が可能になるとも考えています。 市場分析に必要なステップ 市場分析においては、目的の言語化が重要です。市場分析は主に「自社プロダクトの市場成長性と方向性決定のため」「自社事業成長戦略のポジショニング決定のため」の二つの観点を想定しています。目的ごとに仮説を立て、分析軸を決めることが必要です。具体的には分析目的をMECEで言語化し、優先順位を付けて最上位から着手します。何をどのように比較するか、仮説が本質的な目的から外れていないかを確認し、ゴールまでの計画を立てます。 データ分析で見える強みと弱み 自社プロダクトの分析には、「あるべき姿」と現状のギャップを言語化し、そのプロセスとしてデータ分析を活用します。市場ポジションの分析では、自社プロダクトの利用状況推移と同セグメントのアプリの一般的な状況を比較し、強みや弱みを特定します。また、ユーザーのペインを見つけるためにデータ分析を行い、アンケート結果やユーザーインタビュー結果を再評価し、インサイトを見出します。

デザイン思考入門

発想転換で掴む次世代解決策

どうして視点変更? ライブ講座のプロトタイプ発表では、視点を変えることの大切さと、課題解決において意外な効果があることを学びました。特に登山用バックパックをテーマとして、課題の捉え方を変えると解決策のアプローチも異なり、全く新しい応用例につながることが印象的でした。また、参加者全員が否定せずに各自のアイディアを前向きに受け止め、議論が活発に進んだ点が良かったと感じます。初期段階では改善の余地があるアイディアも多いですが、そうした点に踏み込んで議論する雰囲気作りが重要だと実感しました。 効果はどこから来る? 今回の体験は、単に商品開発に留まらず、他の業務にも応用可能な思考の枠を広げるワークショップとして十分な効果があると感じました。自分の思考の癖に気づく機会にもなり、技術的な面は後回しにしてまずは豊かな発想を引き出すステップが新たなアイディア創出に必要であると学びました。 なぜ議論は難しい? また、アイディアを出す際にはスキャンパー法を試してみたいと思います。今回のシェアや議論はスムーズに進みましたが、実際の職場では以下のような理由からディスカッションが難しい場合もあると感じました。 ・ポジティブな議論に慣れていないため、否定的な雰囲気になりがち ・結論を急ぐ傾向があり、十分な議論が行われない ・現状維持を好むため、新たなアイディアが無視される ・いかにアイディアを出しても、従来通りの結論に戻ってしまうと感じる ・突飛なアイディアを受け入れる土壌が整っていない ・質問を避ける傾向にある こうした状況に対しては、1~3枚程度のスライドにアイディアをビジュアル化し持ち寄ることで、言葉だけでは伝わりにくい発想を明確にし、議論を促進できると感じました。実際、業務においてプロトタイピングの機会は少ないものの、AIやクラウドサービスを利用すれば自分の考えを手軽にビジュアライズできるため、非常に役立つと実感しました。 どう未来を描く? 今後は、対象顧客の課題をしっかり理解し、その中から解決すべき点を明確にした上で、アイディアの出し方やビジュアル化、フィードバックの仕組みを業務に取り入れるステップを意識していきたいと思います。一旦アイディアを数多く出し、形にして共有することで、より実践的な問題解決につなげていく方針です。

データ・アナリティクス入門

データ分析で解決策を見つける旅

問題解決とデータ分析の関連性とは? 今週の学習を通じて、問題解決のプロセスとデータ分析の関連性について学ぶことができました。特に印象に残ったポイントは、問題解決のステップを「What(現状把握)」、「Where(問題特定)」、「Why(原因究明)」、「How(対策検討)」という形で整理するアプローチです。このステップを行き来しながら問題を深掘りしていく方法は、データ分析で何から取り組んで良いかわからない時に役立つ道筋を示してくれるため、非常に効果的だと感じました。 STARフレームワークの有効性は? 現状把握においては、問題を「あるべき姿」と「現状」のギャップと捉えることが重要です。このギャップを、STAR(Situation:状況、Target:あるべき姿、Action:行動、Result:結果)フレームワークを活用することで、より具体的に問題解決のプロセスをイメージしやすくなります。また、問題を因数分解することで、要素を細分化し問題のある箇所を特定でき、優先的に対応すべきところが明確になります。逆に、不要な範囲を明確にすることで、効率的に問題解決に繋がることも新たな発見でした。 ロジックツリーとMECEの効果は? 問題の因数分解にはロジックツリーが効果的で、層別分解や変数分解(掛け算)の2種類を問題に応じて使い分けることで、より効果的に分析が行えます。MECEの概念も重要で、「抜け漏れ、ダブりなく」問題を捉えることが重要です。 データ分析の具体的な活用例は? 今後、学んだ内容は患者の受診動向調査に活用できると考えています。どのような患者が、どの診療科をどのくらいの頻度で受診しているのかを分析することで、患者のニーズや医療機関の利用状況を把握できます。ただし、実際に活用するためには、現在のデータが分析に必要な要素を網羅しているかを確認する必要があります。 分析の目的は何か? データ分析の目的は、大きく分けて二つです。まず一つ目は患者サービスの向上で、ニーズに合った医療サービスを提供するために分析結果を役立てます。二つ目は病院経営の改善や効率化で、患者の利用状況を分析することで、リソースの最適化が図れます。さらに、定量分析だけでなく定性分析を利用することで、サービス提供時の運用上の問題を解決する可能性もあります。

「利用 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right