データ・アナリティクス入門

小さな実験、大きな発見

テスト比較の狙いは? A/Bテストでは、施策の比較効果を検証するため、比較対象のグループ間での差異を可能な限り限定することが重視されています。例えば、目的や仮説を明確にし、検証項目をしっかり設定することが大切です。また、テスト対象は1要素ずつに限定するべきであり、複数の要素を同時に検証したい場合は、別の手法を検討する必要があります。さらに、比較実験は同時期に実施することで、外部要因の影響を排除する狙いがあります。 利用段階の課題は? ファネル分析については、ユーザーの利用段階ごとに各プロセスを分解し、どの段階で離脱が発生しているかを明らかにする手法です。デジタルマーケティングでの活用は非常に効果的ですが、営業活動における利用も十分に期待できると感じました。ただし、営業活動の場合は、各担当者が利用プロセスや各段階(Stage)の定義を正確に理解し、適時更新することが不可欠です。例えば、Stageの更新が一度に行われる場合や、同一状況でも担当者によって判定が異なる場合、分析の精度が低下する恐れがあるため、その点に留意する必要があります。 全体の改善点は? さらに、Top、Middle、Lowパフォーマー各グループでの離脱状況の違いや、全体で共通して離脱が目立つ段階を把握することで、どの段階に改善の余地があるのか具体的に見極めることができると考えました。

クリティカルシンキング入門

数字で拓く!問いの提案術

グラフで何が見える? まず、データ分析においてグラフ化の重要性を再認識しました。グラフにより数値を視覚的に捉えることで、抜け漏れがないかや新たな切り口で分解すべき点に気づくことができます。 仮説をどう活かす? また、仮説を立てた上で分析する手法の意義も感じました。意味のあるデータの切り分けが可能になり、仮説検証のサイクルを回すことで、より納得感のある結論に近づけると実感しています。 問い続ける理由は? さらに、常に問い続ける姿勢が大切であることも学びました。初めに思いついた主張や根拠、データの特徴に飛びつく傾向があったため、十分な納得感を得られなかった経験を踏まえ、問い直すことで提案の精度を高める重要性を認識しました。 IT戦略はどう選ぶ? 今回の学びは、IT戦略においてどの領域へ投資するかを見極めるアプローチに活かせると考えています。企業の意思決定者に対して誰もが納得する提案を行うため、数字を加工・分解して的確に課題を捉えるとともに、問い続けるプロセスで自分の案を磨いていくことが必要だと思いました。 説得力はどう磨く? 実務においても、この学びを実践し習慣化することで、より説得力のある提案を行っていきたいと考えています。加えて、数字を切り分ける際の観点や、MECEなどの枠組みについて、皆さんの意識している切り口を教えていただければ幸いです。

データ・アナリティクス入門

平均だけじゃ語れないデータの秘密

データ分析の秘訣は? 今週は、数字に集約してデータを比較・分析する手法を学びました。単純な平均値だけでなく、データの中心を示す代表値や、どのようにばらついているかを示す散らばりの視点からも計算・分析することで、データの偏りや傾向を正確に捉えることができると理解しました。一方で、単純平均だけに頼ると誤った分析結果に至る可能性があるという点も印象的でした。特に、実践演習での受講者の平均年齢の設問において、単純平均では実際のデータの分布と乖離があることが実感できました。 最適計算方法は? また、代表値や散らばりには複数の計算方法が存在することも学びました。状況に応じて最適な計算方法を選択し、仮説の検証に役立てていきたいと考えています。 人流データはどう見る? 例えば、人流データの年度別や地域別での比較において、従来は増加率を用いることが多かったため、得られる情報が限られていると感じていました。今回学んだアプローチを踏まえ、具体的な仮説のもと、どの計算方法が最も有効かを検証していくつもりです。 グラフの意図を探す? 自分の業務では、可視化されたグラフから示唆を得る場面が多いですが、まずはそのグラフがどのようなデータ項目から構成されているのかを数値で確認し、どのような意図で作成されたのかを図表とともに理解することを意識して取り組んでいきたいと思います。

データ・アナリティクス入門

仮説の一歩で見える世界

出発点はどう捉える? 仮説は、出発点に過ぎないという考え方を大切にしています。分析を行う際、つい一つの可能性に絞ってしまいがちですが、実際には多様な視点から課題を捉えることが求められます。そこで、3C(顧客・自社・競合)や4P(商品・価格・流通・販促)のフレームワークを活用し、情報を体系的に整理することで、全体像を的確に把握するよう努めています。 MECE原則は何? また、分析を進める上でMECE(漏れなく、ダブりなく)の原則を意識することは、論理の抜けや重複を防ぐために非常に重要です。この考え方に基づき、仮説の精度を高め、実効性のある施策の立案へとつなげる努力をしています。 可能性はどこに? 今後の行動計画としては、業務で仮説を立てる際に「他に可能性はないか?」という視点を意識し、複数の仮説を構築するよう訓練していきます。さらに、日常業務において定期的に3Cや4Pのフレームワークを活用し、情報を構造的に整理するプロセスを取り入れていく予定です。 振り返りの意義は? 分析や資料作成の際には、必ず自分自身でMECEの観点からセルフチェックを行い、論理の偏りや抜け漏れがないか確認する時間を確保します。また、仮説の検証結果やそのプロセスを定期的に振り返ることで、思考の偏りや成功パターンを明確にし、実践的な仮説思考力の向上を目指していきたいと考えています。

データ・アナリティクス入門

仮説と検証で解く未来への一歩

どう原因を探る? 問題解決の原因を探る際は、まず全体像を把握し、プロセスをどのような構造で進めるかを考えます。そのうえで、単に全体を細分化するのではなく、「ここに問題があるかもしれない」という仮説を立てながら適切に分解していくことが大切だと感じました。 解決策はどう決める? また、解決策を検討する場合は、複数の案を洗い出し、定量的な基準など根拠をもとに評価しながら絞り込むことが効果的です。この手法のひとつとしてA/Bテストが挙げられます。A/Bテストでは、実際の反応を確認することで、低コストかつリスクを抑えながら一つずつ要素を検証することができます。実施時には、目的や仮説、検証項目、そして期間や時間帯といった条件を統一することで、他の要因が評価に影響しないよう留意する必要があります。 本当のゴールは? 実務においては、どうしても自身の感覚や他者の意見に頼りがちですが、次回からはたとえ結論が同じになった場合でも、客観的かつ定量的な評価を取り入れて複数の解決案を検討し、アプローチするよう心がけたいと思います。また、アサインされた案件や依頼事項の目的が本来「問題解決」であることに気付かない場面もあるため、まず「何がゴールなのか」を自分自身や他者に問い直すことの重要性を再認識しました。 もし、実際に業務でA/Bテストを実施された事例があれば、ぜひお伺いしたいです。

データ・アナリティクス入門

ITシステム導入の効果を比較で検証!

分析で大切な比較の本質とは? 今回の学習を通じて、以下の重要なポイントに改めて気付きを得ました。 まず、分析の本質は比較にあることです。ある場合とない場合を比較する、いわゆる「Apple to Apple」の比較が重要です。また、分析に入る前に仮説を立てることが大切であり、目的を明確にすることが求められます。具体的には「何を見たいのか」「何が見えるのか」を明確にすることが重要です。さらに、グラフを活用して視覚的に捉えやすくすることも効果的です。 ITシステム導入の比較ポイントは? これらのポイントを念頭において、バックオフィスにおけるITシステム導入の検討を進める際には、以下の点を意識して比較を行いたいと考えます。 まず、「何のために比較するのか」を明確にし、導入した場合としなかった場合の効率面やコストを具体的に、定量・定性データで比較することが必要です。何を見たいのかを明確にし、複数社での比較を実施することが大切です。また、場面によっては仮説を立てて進めていくことも考慮すべきです。 導入効果をどう検証する? 具体的には、人事系システム導入に向けて、まずは社労士などのスペシャリストからの助言を参考にしつつ、導入の目的自体を明確にします。次に複数社での比較を実施し、導入した場合としなかった場合の検証を行います。この視点で検討を進めていきたいと思います。

データ・アナリティクス入門

着実な一歩が未来を開く

データ分析で何が分かる? 問題解決にあたっては、ステップごとにデータを分析しながら進めることで確実な解決が可能となります。また、様々な仮説を立てて検証することで、多角的な視点を得ることができ、この組み合わせにより、データ分析をより効果的に活用し、最適な解決策を導き出すことができます。 収集条件は統一できる? 自分でデータを収集し、複数の仮説を検証する場合、それぞれの仮説に対応したデータ収集の条件を可能な限り統一することが重要です。既存のデータを比較する際も、比較したい条件以外の要素を揃えた状態で行わなければ、得られる比較結果が本来の目的と乖離してしまいます。 集中が続かない理由は? 一方で、私自身は視野が分散しやすく、さまざまな仮説を考えるのは得意なものの、目的に向かって確実に進むことが苦手だと感じています。そのため、常にゴールへの道筋をステップに区切って考え、1つ1つを着実にクリアしていくことを心掛けるようにしました。これにより、自分の特性を活かしながらも、確実に問題の解決へ向かうことができると実感しています。 目標達成法はどうする? 今後は、さまざまな業務に取り組む前に、まず解決すべき最終目標とそこに至るステップを明確にし、その上で各ステップで仮説を検証しながら前進していくことで、着実に成果へと導いていきたいと考えています。

データ・アナリティクス入門

在庫の謎、仮説でスッキリ解決!

分析フレームはどう使う? 分析の実施に際して、講義ではプロセス、視点、アプローチという3つのカテゴリに分けたフレームワークが紹介され、シンプルなモデル化が印象的でした。仮説思考のプロセスは「目的の把握」「仮説の立案」「データ収集」「検証」の4段階に分かれており、分析に必要な視点として、インパクト、ギャップ、トレンド、ばらつき、パターンの5つが挙げられました。また、具体的なアプローチとしてグラフ、数字、数式の3つが提示された点も理解の助けになりました。 クライアント事例を深掘り? 現在、あるクライアントから依頼をいただいている基幹システムと倉庫管理システム間の在庫差異に関する分析支援に、本講座で学んだ内容が活かせると考えています。ロケーション、保管場所、品目、品目タイプ、システム、オペレーションなど、複数の要因が複雑に絡み合いながら在庫状況に時間的なずれを生じさせているため、講義の知識が問題解決の一助になるのではないかと思います。 差異分析の視点は? また、Q2で実施している活動において、差異分析のプロセスの意識づけに講義内容を活用できると感じました。オペレーション履歴の抽出や、過去3カ月分のデータを用いた分析の中で、ばらつきやパターンという視点が特に重要であると実感しています。そのため、今回学んだ相関関係を意識した分析手法が有効に働くと考えています。

データ・アナリティクス入門

仮説と仲間が拓く未来

どうやって仮説を立てる? データ分析を始める際、いつもありがちな仮説で立ち止まっていた自分に対し、3Cや4Pといったフレームワークを活用して思考を整理し、仮説を立てる方法を学びました。仮説は単に立てるだけではなく、その検証も極めて重要であり、さらに施策を講じる際には顧客目線が不可欠であることを改めて認識しました。 意見交換は必要? また、仮説やアイディア出しの過程で、当たり障りのない意見だけではなく、否定的な意見や斬新な発想を取り入れることも必要だと感じました。一人の意見では偏りが生じやすいため、同じ目的に向かって柔軟な視点を持つ仲間との意見交換が、より良い施策を生み出す鍵になると実感しました。 基本指標をどう見る? さらに、Webマーケティングの基本的な指標であるPVやUUなどの知識は、今後欠かせない領域であると認識し、引き続きツールなどを活用した学習を進めていきたいと思います。過去にカスタマージャーニーマップを作成した経験から、自分とは異なる属性の視点を取り入れる重要性を痛感し、今後はより多様なシチュエーションを考慮して視野を広げる努力を続けたいと考えています。 集計分析で何が見える? また、クロス集計分析の手法は、現在携わっているアンケート業務において大いに役立つと感じ、今後も定量的な面から分析を深堀していくつもりです。

データ・アナリティクス入門

課題発見!データが導くヒント

データ分析は何に使う? まず、データ分析は単なる数値の羅列に意味を見出すのではなく、特定の問題を解決するために行うものです。いきなりあらゆるデータを収集しても、どの部分に着目すべきかがわからず、効果的な結果に結びつきにくいでしょう。したがって、まずは問題を明確に定義し、大まかな分析から始め、論理ツリーやフローチャートなどを活用してデータを分解します。この際、解決策に結びつくような意味のある分け方を意識し、比較対象を明確にすることが大切です。 問題解決はどう進む? また、問題解決のプロセスにおいては、「何が問題か(What)」、「どこに原因があるか(Where)」、「なぜその原因が生じたのか(Why)」、「どうすれば解決できるか(How)」という4つのステップに沿って、仮説をいくつか立てながら、検証を進めることが求められます。分析の際は、複数の仮説を網羅的に洗い出し、分析フレームワーク(3Cや4P、5フォース、PESTなど)を活用するのが有効です。例えば、ある期間の売上減少については、内部要因(販売店の比率、広告費、性年代別の購入者率、リピート率など)と外部要因(気温、感染症の流行、訪日外国人の数など)の双方を収集・比較し、ギャップが大きい部分に絞って深堀りを行います。最終的には、複数の解決策を挙げ、判断軸に基づいて最適な対策を選定するという流れになります。

データ・アナリティクス入門

比べる力が未来を変える

ライブ授業で感じた点は? 締めのライブ授業では、これまでの学びを振り返る機会がありました。データ分析の手法として、比較を活用する方法を学び、目的設定から仮説構築、データや情報の収集、分析、さらには仮説の検証という一連のプロセスの重要性を実感できました。また、自分の考えにとらわれず、さまざまな視点から検証することの大切さも理解でき、これらの手法をいかに実践し、スキルとして身につけるかが今後の課題であると感じています。 部門業績の課題は? 部門業績分析においては、自部門の営業データを活用し、強みと弱みの再確認を進めています。さらに、セグメント別の成長性や低成長部門の課題を明確にし、改善策の検討や戦略の見直しにつなげたいと考えています。次年度の目標設定にあたっては、今年の実績を論理的に分析し、定量的・定性的な評価が可能な具体的な目標を立てる予定です。すでに各メンバーには来期に向けて自ら考えた目標設定を進めてもらっており、私自身も部門全体の強みや弱み、注力すべきセグメントを整理した上で、各メンバーの目標と比較・検証を行っています。このプロセスを通じて、部門全体で論理的な目標理解を深め、同じ方向性で次年度の業務に取り組むことを目指しています。目標設定は3月中に取りまとめ、次年度からは月次で目標達成度の比較分析を実施し、達成に向けた具体策を全員で共有していく方針です。

データ・アナリティクス入門

数字の裏側に潜む物語

分ける理由は? 先日のライブ授業では、ワークを通じて「分けて見ること」と「比較すること」の重要性を学びました。データを全体で捉えるのではなく、商品や期間ごとに分け、前の商品と比較することで、これまで見えにくかった課題や傾向が明らかになる点を実感しました。さらに、分析の過程で仮説を立て、その仮説を検証するためにデータを集めることで、課題の原因がより明確になり、具体的な対策を講じやすくなると感じました。 分類で見える? これまでの生産業務では、全体の実績や結果だけを見て対応していた面もありました。しかし、今後は部門別、商品別、時期別などにデータを細かく分類し、前年比や他部署との比較も取り入れることで、具体的な改善点を抽出できると考えています。 仮説で検証する? また、数値の変動に対して「なぜこのような結果になったのか」という仮説を自分なりに立て、実際のデータや現場の声を確認して検証するプロセスを習慣化することで、業務改善に向けた提案の質を高めていけると考えています。 成果を活かす? 今回の授業で得た知見を生かし、今後は実績データを部門別や月別に分類し、前年同月比や他部署との比較を通して課題の可視化を進めていきます。加えて、数値の変化に対する仮説の検証を、追加のデータ収集や現場のヒアリングを通して行い、具体的な改善策につなげていくよう努めます。
AIコーチング導線バナー

「仮説 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right