クリティカルシンキング入門

言葉の省略で気づいた伝達術

主語の省略で困る? 日本語では主語が省略されることが多く、省略の仕方によって伝わり方が大きく変わると実感しました。実際に文章を書いてみることで、自分が話す際にもこの点に陥りやすいと感じ、相手に伝えるときは意識することの大切さを学びました。 外部連携はどうする? また、外部のパートナーと相談する場面では、求める教育内容や評価基準について、具体的な表現を用いて分かりやすく伝える重要性を改めて認識しました。社内では通じる内容も、社外では伝わらないことがあるため、情報発信の際には注意が必要です。まず、作成した報告書や会議の議事録などを、第三者が読んでも理解しやすいかどうか、別の視点で再確認することを心がけています。また、プレゼンテーション資料についても、メインのメッセージが明確に伝わるよう、具体的な根拠を示しているかチェックするようにしています。

データ・アナリティクス入門

数字が導く成長物語

平均と中央値の必要性は? 平均と中央値は必ず確認するようにしていました。普段は数字を多く扱わないため、加重平均や標準偏差を使うケースはほとんどありませんでしたが、数が多い場合にはこれらを用いることもあり、特に違和感は感じませんでした。 意見共有は効果的なの? 日頃から行っている手法ですが、最近は大規模な数値を扱う機会が少なく、現状ではあまり活用できる場面が想定できません。しかし、他者と同じ観点で意見を出し合うためには、この考え方を共有することから始めるのが効率的だと考えました。 グラフ形式を再考すべき? また、いつも同じ形式のグラフを使いがちだったため、より適切な形態を再度検討してみるのも良いと思いました。一時期はヒストグラムを多用していたものの、ここ数年は使用していなかったので、今後改めて利用してみたいと感じています。

データ・アナリティクス入門

適切な比較が導く分析力アップの秘訣

比較の本質とは何か? 分析の本質は比較にあり、適切な比較対象を選ぶことが重要であると学びました。特に、比較対象が適切かどうかを判断する際には、分析の目的に立ち返ることが大切だと感じました。 外部環境の影響にどう対処する? 中期経営計画の策定や予算予想の達成に向けて、事業の課題や改善点を過去の実績から分析するだけでなく、外部環境が事業に与える影響についても分析し、仮説を立てる場面でこの知識を活用したいと思います。 日常業務での気付きと見直し 講義を聞いた時点では、一見すると当たり前の内容に思えることも、実際に練習問題を解こうとすると、目的を忘れ、適切な比較対象を考えられないことに気づきました。私自身も業務において、本来の目的から外れた分析や結論に至ることがあるため、適切な比較ができているかを常に見直す習慣を持ちたいと考えます。

クリティカルシンキング入門

多角的視点で課題解決!MECE思考のススメ

データ分解で得られる効果は? いろいろな視点でデータを分解して考えることで、様々な要因や事象が把握できることを実感した。これにより、物事の考え方や見方が変わり、今後のアクションも変わってくる。日常的にこの切り口を考えることが必要だと感じた。 数値の目的意識とは? 数値と向き合う場面が多いため、この数値が何を目的としているのかを常に意識することが大切だと思う。これを習慣化することで、課題解決能力が向上すると感じた。もれなくダブりなく、MECEを意識して取り組んでいきたい。 他者の意見をどう活用する? 分解のプロセスを多角的な視点で行うために、他者の意見を取り入れることが重要だ。また、他者にもMECEを意識してもらうために、他者のアクションにも気を配りたい。これが全体の成果につながり、会社としての成果にもつながると考える。

データ・アナリティクス入門

標準偏差で見えるデータの魔法

標準偏差ってどう理解? バラツキを示す標準偏差について、普段利用する機会が少ないためか、初めて触れる際にはとっつきにくい印象を持ちました。学校での成績に用いられる偏差値とは異なるものなので、具体的な事例に基づいて何度も実際に使ってみることが重要だと感じます。 代表値とバラツキの違いは? 一方、単純平均、加重平均、中央値といった代表値は、日常的に利用しているため理解に苦労することはありません。しかし、バラツキに関してはこれまであまり注目してこなかったため、データの特徴把握のためにも積極的にビジュアル化し、標準偏差を意識して利用したいと思います。 どう実践に活かす? 今回学んだ内容を実践に取り入れる際、代表値だけでなく、標準偏差がどのような場面で効果的に使えるのかを具体的に考えながら業務に活かしていきたいです。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

データ・アナリティクス入門

整理の魔法!ロジックツリー術

全体像はどう把握? ロジックツリーを用いることで、全体を俯瞰して物事を捉え、抜け漏れなく整理する手法を学びました。同時に、細かく分割する過程で目的そのものに偏らず、重要な要素を見逃さないバランス感覚の大切さも実感しました。 学びをどう応用する? これらの学びは、データ移行のプランニング時のプロセス分割や、データ分析において対象項目の洗い出しと重要度付け、プロジェクト体制の整理、また予算計画時の項目洗い出しなど、業務のさまざまな場面で応用できると考えています。 具体策はどう実行? 具体的な行動としては、まずスコープを決定する際にチェックツールを活用して抜け漏れがないかを確認し、プロセス整理の際にはロジックツリーを使って複雑な要素を分かりやすく簡素化する取り組みを行っていきたいと思います。

戦略思考入門

学び直しで未来への一歩を踏み出す

どうして情報整理が難しい? 現場での課題や未来に向けての可能性のある課題を常に考慮しながら行動することの難しさを理解しました。この難しさがあるため、一度立ち止まって考える必要があると感じました。しかし、その際に情報量が不足していることが多く、どのように整理していくのかが非常に勉強になりました。 現状改善はどうする? 現実の場面に当てはめて考えることができ、今の状況が非常に困難であると改めて理解しました。どうやって改善していくのかをもう一度考える良い機会になったと思っています。 どうやって実践に移す? 実践できることが多かったため、現状からすべて改めていく必要があると感じました。すぐに変わることは難しいかもしれませんが、次の行動に対してアクションを起こせるようにしていきたいと思います。

データ・アナリティクス入門

自ら選ぶデータ分析の真髄

データ分析から何が学べる? データ分析を通じて、体系的な課題解決方法を学びました。実際に扱うデータは自ら補完する必要があるため、比較意識を持って必要な情報を選定するスキルを高めたいと考えています。 応用力はどこから来る? また、業務全般に応用可能なフレームワークや思考パターンを習得できたと感じています。単一の業務でなく、思考が求められる多くの場面で今回の学びを実践し、常に意識を持って取り組んでいきたいと思います。 課題対策は具体的に? 違和感や課題に直面した際は、確認を含む仮説の立案やプロセスの細分化を意識して行いたいです。分析フェーズでは、比較を通じて実証を目的としたデータ抽出や多角的な視点からの提案を心掛け、より具体的な検証ができるようになりたいと考えています。

クリティカルシンキング入門

ロジックツリーで見える説得力

根拠の使い分けは? 根拠を使い分けるという発想はこれまで無かったため、提案を行う際に必ず課題の形成、その原因、解決策という流れで考えてきた自分にとって大変新鮮な学びとなりました。 ロジックツリーの効果は? また、資料作成や他部署への提案において、前提知識のある相手なら多少省略しても伝わるものの、実際の業務ではそのような場面は少なく、ロジックツリーを用いることで相手に明確に伝わる文章を作成する必要性を強く感じました。 説得力向上はどう? さらに、報告や資料作成において結論だけではなく、根拠が明確でないために論理が飛躍し説得力に欠ける場合が多かったことから、ロジックツリーを活用して、説得力のある提案ができるよう努めていく所存です。

データ・アナリティクス入門

グラフで魅せる平均の真実

どの平均を採る? 平均という言葉一つをとっても、その状況にふさわしい計算方法を採用しなければ、意味をなさないと感じています。どの平均値を用いるべきか、またどの数値を算出すべきかを十分に理解し、それぞれに合った平均値を出すことが大切だと思います。さらに、グラフを活用することで、視覚的にわかりやすい情報提供ができると考えています。 ビッグデータの平均は? 実際のところ、現在の業務においては平均値を用いる場面はあまりありません。しかし、扱うデータ量が多いビッグデータの現場では、いずれ必要になると予想されます。その際には、どの平均を選択すべきかを慎重に検討し、わかりやすいグラフによってデータを効果的に提示していきたいと思います。

クリティカルシンキング入門

新技術の魅力を引き出す方法を学ぶ

説得で重要なのは何? 説得する場面では、相手に応じた理由づけを選択することが重要です。具体的な例として、新技術開発における技術の必要性を提示する際には、味覚やコストなどの異なる要素を複数並べて説明します。これにより、説得する部署に合わせた材料を用意することができます。 エクセルで伝わる説明を また、エクセルを用いてピラミッドストラクチャー構造を作成し、上司や他部署への説明に利用する方法も有効です。報告書を作成する際には、主語と述語を明確に使用し、何がどれだけ変化したかを具体的に記載します。さらに、相手の立場に立って結論を選び、より良いコミュニケーションを取ることが求められます。

「場面」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right