データ・アナリティクス入門

仮説で挑む学びの冒険

仮説はどこから始まる? ■仮説を立てる 仮説を立てる際には、まず3C分析や4P分析などのフレームワークを活用し、幅広い視点で考えることが効果的です。複数の仮説を挙げ、これらの中から絞り込むことで、反論や別の可能性を排除できるように意識することが大切です。また、意図的に役割や網羅性を持たせることもポイントとなります。 検証はどう行う? ■仮説を検証する 仮説を検証する際は、比較の指標として平均や標準偏差などのデータ評価の手法を選ぶとよいでしょう。加えて、データ収集の際には「誰に」「どのように聞くか」に十分注意し、有力な仮説の検証に加えて、他の仮説が成立しないことを示すデータも集める必要があります。 仮説の違いは何? ■仮説の分類と意義 仮説には「結論の仮説」と「問題の仮説」の2種類があります。複数の仮説を立てることで、検証マインドや説得力が向上し、関心や問題意識が高まるだけでなく、物事のスピードや行動の精度も向上することが期待されます。 最初は何から進める? 仮説が求められた場合、最初にどこから取り組めばよいかわからなくなることがありますが、その際はフレームワークを活用するのが良いと考えています。実際、過去には「クロスセルで自社商品と相性のよい商品は何か?」や「価格変更による影響」を検討した経験があります。似たような課題に対しても、あらゆる仮説を立てたうえでロジックツリーに当てはめ、優先度を決めながら、時間をかけて分析すべき事項を整理していきたいと思います。 有力仮説はどう選ぶ? どのように客観的な仮説を複数挙げるか、また有力な仮説に偏りが生じた場合にはどのように対応すればよいかについて、具体的な方法を検討したいと考えています。

データ・アナリティクス入門

分析手法でビジネス課題を解決!

問題発見に必要な分析とは? ビジネス上の問題や課題を発見するためには、影響の大きい部分から分析を始めることが重要です。そのため、現状を可能な限りヌケなくモレなく構成要素に分解する必要があります。特に事業収益を分析する際には、損益計算書が優れた例となり、経費がMECE(Mutually Exclusive, Collectively Exhaustive)に分解されています。 顧客属性分析で成功するには? 私の業務であるプロモーションにおいても、顧客属性や売上の構成を分析し、ターゲットとすべき顧客セグメントを抽出するのに役立ちます。売上や利益を伸ばすためにどのセグメントに焦点を当てるべきかという課題に対して、この方法は非常に有効です。しかし、広告媒体の効果検証には、ユーザーのタッチポイントが単一媒体に留まらないことから、複雑な分析が必要であるため、必ずしも適しているわけではありません。 ターゲティングの優先順位は? 具体的な分析手法としては次のようなものがあります。まず、店舗単位で顧客と問い合わせユーザーの住所や所属の件数を割り出し、ギャップが多いほど見込み顧客が多いと考えられるため、これを検証します。また、顧客の所属数と自社客のシェア率を把握し、優先的に取り組むべき所属を抽出します。ただし、店舗からの距離、競合の立地、ターゲット層の志向などにより、シェア率が低いセグメントが必ずしも優先順位が高いとは限らない点に注意が必要です。 Webと商品の相性をどう見るか? さらに、Web上での申し込み傾向を分析し、特定のカテゴリーで商品とWebの相性が良いかを分析することも重要です。これにより、より効果的なプロモーション戦略を立てることが可能になります。

クリティカルシンキング入門

自分を問い直す学びの旅

本質はどう捉える? 物事を深く考える習慣が大切だと感じました。表面的な情報に惑わされず、「本質は何なのか?」と常に問いかける姿勢や、偏らない多角的な視点を持つことが重要です。柔軟なアプローチで物事に接することで、これまで気づかなかった発見に出会える可能性があります。また、感情に流されすぎると判断が困難になるため、冷静さを保つことも大切です。こうした過程を経ることで、質問する力や自信が育まれ、相乗効果が生まれると実感しています。正解にたどり着くプロセスを大切にすることこそが、クリティカルシンキングであると改めて感じました。 ITで何を感じる? 私はIT業界に従事しており、これらの考え方は特に問題解決やトラブル対応の場面で役立っています。エラーが発生した際は、まず「その本質は何か?」を追求し、要件定義や仕様書作成の際には、顧客の要望を正確に把握することに努めています。プロジェクトの意思決定では、複数の選択肢から最適な判断を導き出す際や、コードレビューでロジックの意図を確認する際にも、クリティカルシンキングが大いに活かされると感じています。さらに、リスク評価やセキュリティ対策など、さまざまな場面でこのアプローチが有用であると実感しています。 目標設定はどうする? まず明確な目標を設定し、どの業務や課題に適用するかを決めます。次に情報収集を行い、得られた情報が正しいかどうかを吟味します。その上で、疑問を持ち、批判的に検証する習慣を身につけることが大切です。会話の際には複数の視点を意識し、問題を小さな単位に分解して考えるよう努めています。感情と事実を分け、冷静に判断することで、継続的なスキル向上と努力を重ね、確実に成果を積み重ねていきたいと考えています。

デザイン思考入門

共感から始まる挑戦の教室

なぜ共感が大切? 高専教育におけるデザイン思考の実践応用が具体例として示され、プロジェクトベース学習の改善の流れがとても分かりやすく整理されていました。まず、学生が実際に課題に取り組む様子を観察し、どこでつまずいているかを体験的に理解する「共感」のステップから始まります。その後、「2年生のプログラミング初学者がエラーメッセージに直面したとき、原因の特定が難しく挫折感を感じている」という具体的な課題定義につながり、その問題に対する多角的なアプローチとしてSCAMPER法を活用する発想へと発展させています。 試作とテストの効果は? さらに、簡易的なデバッグガイドやチェックリストを作成し、小規模なクラスで試用することで、「試作」と「テスト」のサイクルが迅速に回されました。実際の授業では、このプロセスを通して、教員が見落としていた細かい困難点や、学生が質問しづらい心理的ハードルが明らかになり、具体的かつ効果的な改善策を議論できる環境が整えられました。 多角発想はどう役立つ? また、従来の一方通行の解説にとらわれず、例えばエラーメッセージを視覚的なフローチャートに変換するなど、多角的な発想が功を奏しました。この結果、学生同士が自然に教え合う雰囲気も生まれ、クラス全体の協力体制が強化されるという予想外の効果も確認されました。 試作の意義を感じる? さらに、デザイン思考における試作の意義が改めて実感されました。実物に近い試作に限らず、デザイン画や説明動画など、さまざまな形でフィードバックを得ることが可能です。視覚的な印象や使用シーンの具体性を重視するフィードバックは、教材の改善に大いに役立ち、実践を通じた気づきを促す重要な要素となっています。

データ・アナリティクス入門

小さな仮説が大きな発見に

なぜデータを分ける? まずは、分析はデータを分けて整理するところから始まると感じました。各要素や性質の細部まで明確に把握してから整理することが、効果的な分析につながると実感しています。また、比較対象や基準を設け、データを比べることで意思決定を支援する効果にも大きな意義があると印象に残りました。 どこを重点分析? 動画学習では、帰還した戦闘機の被ダメージ部分とそうでない部分、さらにその他の箇所について、どの部分の分析が有用なのかという問いかけがありました。帰還しなかった戦闘機では、被ダメージの少ない部分に致命的な損傷がある可能性を想定し、その箇所を中心に分析すべきだという仮説思考を学び、これまでになかった視点を得ることができました。 データで判断する? また、データの収集や分析の目的は、それを基にした適切な意思決定にあると感じます。意思決定を円滑に進められるよう、データ分析のスキルを磨いていく必要性を強く意識するようになりました。 売上の謎は何? 売上分析においては、課題の真因を明確にするために、売上に直結する各種データをどのように収集するかが重要です。過去の実績や予算、さらに他社の数値との比較によりギャップを把握し、原因を推察して仮説を立てるプロセスは、正確な分析に寄与するというイメージが湧きました。 本質はどう捉える? 最後に、データ収集の際は、必要な要素の抽出を慎重に行うことが求められます。MECEの思考法を活用し、要素の抜け漏れを防ぐとともに、各項目に適した分析手法を検討することが大切です。データそのものの生成に注力するのではなく、本質が何かを見極め、意思決定を促す資料として仕上げることが、最も重要であると感じました。

戦略思考入門

無駄を捨てる勇気で未来を切り開く

不要なものをどう捨てる? 不要なものを捨てることや、省くという考え方が、ワークを通じて理解できました。複数の顧客に対して優先順位をつける際、利益を見るだけでなく、ROI(投資対効果)を考慮することが重要です。無意識に懇意にしている顧客の優先度が高まり、対応が難しい顧客の優先度が低くなるといったバイアスがかかることを意識し、ROIの低い顧客を勇気を持って捨てる判断をすることが必要です。 効用最大化か方向性の明確化か? 利益の正確な計算が難しい場合も、一定の仮説を置いて思考を進めることで、複数のパターンで仮設思考を用いることができます。また、トレードオフの場面では、効用の最大化を図るか、要素を省いて方向性を明確化するか、その選択が誤らないよう注意が求められます。昔からの習慣に流されず、勇気を持って無駄や優先順位の低いものを捨てることで顧客の利便性を増し、自社が注力すべき業務に集中できるようになり、結果的にさまざまな貢献に繋がると感じました。 店舗分析で優先課題を抽出 自身が担当するエリアには5店舗がありますが、各店にはさまざまな課題があります。課題の大きさや緊急度、会社への寄与や貢献度を踏まえ、優先順位をつけて取り組む必要があります。これは今週のワークが活用できる場面です。店舗の売上の規模感と利益の構造を分析して優先課題を抽出し、利益とは切り離された問題については捨てる選択も必要になることが分かりました。 ROI向上への具体的な一歩は? まず、各店の売上の構造を見える化し、指標を同一化して分析します。そして、時間や人件費に対する利益率を確認し、効率化できる部分を明確化します。ROIの高い店舗から期限を設定し、課題改善を実践していきます。

マーケティング入門

ターゲット再分析で広がる提案の可能性

ターゲティングの再認識をするには? ターゲティングの重要性について再認識しました。現在の業務では、ターゲットが漠然と決まっていることが多く、そのため提案を作成する際にもそのまま進めていましたが、ターゲットを明確にし、他の切り口からも考えていくことで、提案の幅を広げることができると感じました。 フレームワークはどう活用する? また、ポジショニングマップの活用についても理解が深まりました。提案書作成時にフレームワークの重要性を再確認し、特にポジショニングマップを使うことで伝えたい内容をわかりやすく、より効果的に伝える提案ができると学びました。現在作成中の提案書にこの方法を取り入れて実践しています。 新規業務での提案の工夫は? 新規業務の提案書作成においても、早速ポジショニングマップを作成し、提案の重要なポイントを絞り込んでいます。以前は提案内容が多岐にわたってしまうことが多かったのですが、ターゲットの再分析とポジショニングマップを用いることで、セールスポイントを明確に絞ることができるようになりました。 新市場開拓で見えてきたこと 新しい市場開拓に向けた自社サービスの提案を進めている中で、当初想定していたターゲットとは異なる切り口でも再分析することで、新たに提案できる内容が見えてくるのではないかと考えました。早速チームで共有し、意見を求めることにしました。 チームと成果を共有する方法 現在の提案書作成活動では、ポジショニングマップを取り入れ、チームメンバーにも共有することで、セールスポイントの洗い出しや、重要なポイントの確認に役立てています。ターゲティングについてもメンバーと意見交換し、次回のミーティングまでの課題としています。

データ・アナリティクス入門

理想と現実のギャップを埋める術

現状と理想は何だろう? 手元にあるデータを見つめると、まず「どうしようかな、何をすればいいかな」と迷いが生じました。しかし、まずは現状と理想を明確にし、そのギャップをどのように埋めるかを段階的に考えることが大切だと学びました。 ロジックの魅力はどう? そして、そのプロセスでロジックツリーという手法が登場します。従来、分析とはただ蓄積された情報から何かを取り出す作業だというイメージがありましたが、目標を設定し、漏れなく重複なく案を出し、その中から最適なものを選び出す手順があることに気づき、分析が思っていたよりもクリエイティブな作業であると実感しました。 経営企画室との連携は? また、これまで経営企画室の仕事について疑問を抱いていましたが、おそらく同様のプロセスで業務が進められているのだろうと感じました。今後、経営企画室と連携し株主総会などの準備に関わることになるため、直接データ分析や資料作りに携わらなくとも、同僚が分析した内容を参考にして学ぶことができると考えています。 実践で見えた効果は? さらに、日々の業務においても様々な問題や課題が発生しているため、今回学んだ手法を早速実践してみたいと思います。特に、安全衛生の分野では業務の範囲が定まっておらず、どこから手をつけるべきか迷っていたため、まず全体をMECEで洗い出し、その上でロジックツリーを用いて優先順位を整理する方法は、上司に説明する際にも非常に分かりやすいと感じました。 MECEの見直しはどう? しかし、自分では完璧なMECEになっていると思っていても、実際には抜けや漏れがあるかもしれません。MECEのチェックポイントについて、何か良い方法があるのか疑問に思います。

データ・アナリティクス入門

現状整理で未来を切り拓く

状況整理はどうする? 問題解決の基本アプローチとして、まず「What」の段階で直面している状況を整理することが大切です。現状と「あるべき姿」とのギャップを把握し、単に「出願数が少ない」といった表面的な指摘に留まらず、より深い原因を明確にする必要があります。その際、状況の詳細な把握により「Where」を特定し、分析対象を絞り込むことで、無駄な検討範囲を排除していきます。 原因究明はどうする? また、次のステップとして、WhyやHowといった視点から問題の原因やその解決策にアプローチします。事業成長に直結する知財戦略の立案では、現状認識が不十分な段階で安易な解決策に至ってしまわないよう、各ステップを徹底的に深堀りすることが求められます。そうすることで、問題の核心に迫り、より的確な対策を打ち出すことが可能になります。 ロジックはどう活かす? さらに、ロジックツリーの活用により、問題を階層的かつ体系的に分解する手法も重要です。複数の視点から課題を整理し、解決策を絞り込む際には、「もれなく、ダブり無く(MECE)」を意識しながらも、実践では過度にならないよう適度に活用することがポイントとなります。多様な切り口を持つことで、問題の傾向や根本原因が見えにくくなるリスクを回避し、よりバランスの取れた分析が可能となります。 出願戦略はどう進む? 例えば、出願のためのアイディア発掘や出願計画においても、上記の手法を取り入れることで、各ステップの整理が不足している現状を改善する狙いがあります。現状のプロジェクトでは、主に主観が判断に影響しているため、まずは問題の状況整理に取り組み、ロジックツリーを活用した細分化を進めることが効果的だと感じています。

戦略思考入門

捨てる勇気が戦略を進化させる

戦略における「捨てる」とは? 今週は、戦略における「捨てる」ことについて学びました。実践課題を通じて、ROIを用いて優先順位を決定する判断軸が存在することを理解し、自分の1時間あたりの利益を意識して仕事に取り組むべきだと感じました。また、顧客の会社や市場の成長度合い、当社への貢献度など、さまざまな判断基準があることも改めて学びました。 「捨てる」ことで何が変わる? 「捨てる」ための意識として、いくつかのポイントを強調したいと思います。まず、捨てることで顧客の利便性が向上することがあります。また、昔からの惰性で行動しないことや、専門的なことは専門家に任せることも重要です。これらの意識を持つことで、効果的な戦略を立てることができるでしょう。 トレードオフをどう決断する? 戦略を立てていく中で、トレードオフが発生する場合があります。その際、何を「捨てる」か決断し、意思決定を行うことが必要です。私は営業部署に所属しているため、案件対応を進める際に、これらの判断基準を念頭に置いて工数を決めていきたいと思います。判断が難しい場合は、上司と相談しながら、判断の根拠となる材料(ROIや顧客の貢献度)をもとに決定していきます。 プロジェクトでの「捨てる」選択 現在携わっている新規プロジェクトでは、トレードオフが生じていないか分析中です。トレードオフ状態にある場合は、プロジェクトメンバーと共に何を「捨てる」かを決め、意思統一を図っていきます。業務においては、重要な判断基準をデータとして手元にまとめておくことが有用です。新しいプロジェクトを進める際にも、必要に応じて「捨てる」選択を行い、方向性をメンバーと共に決定していくことを意識するようにします。

戦略思考入門

スキルを活かした業務改善の冒険

規模と範囲の違いは? 規模の経済性と範囲の経済性について学びました。規模の経済性は、現在の業務においても馴染み深いものであり、生産を拡大してコストを削減し、生産効率を向上させる手法です。一方で、範囲の経済性は複数の製品やサービスを同時に生産することでコストを低減する方法です。そのコストダウンのアプローチにはデメリットもあるため、目的に応じた選択が重要です。 演習で何を実感? また、最後の演習では、与えられた数値や資料を基に仮説を立て、その仮説の正しさを検証することから始めました。この過程で、粒を出すことまではできても、それを整理するためのフレームワークの活用がまだまだ不十分であると感じたため、分析能力の向上が必要だと痛感しました。 中長期戦略はどう? 今後の中長期的な視点としては、新規事業への挑戦時に学んだ内容を活用します。新たにBPO・BPR事業に参入する際には、3C分析、SWOT分析、PEST分析を活用し、目的に合わせた組織形成や業務設計を提案することを目指します。 課内改革は何から? 短期的には、課内の組織編制の検討に学んだフレームワークを活用します。現在の業務における課題を明確にし、その課題解決のために適切な組織形態を提案できるようにしていきます。 分析の始め方は? 分析においては、定量的なデータが多いほど効果的であるため、定性的なデータも可能な限り定量化していくところから開始します。また、定性的なデータにおいても進捗が確認できる指標を検討し、目的やKPIを設定します。この設定に当たっては、現状把握を正確に行い、そのための課題や解決策を設計するために学んだフレームワークを活用していきます。

データ・アナリティクス入門

未来を切り拓く!仮説思考の力

仮説はどう整理する? 複数の仮説を立てる際には、その網羅性と分類が重要です。過去の失敗を分析する場合や、将来の事業の成功を予測する場合には、3Cや4P分析を活用して仮説を立ててみると良いでしょう。 データ収集はどうする? 仮説を裏付けるためのデータは常に存在するわけではありません。必要な情報を収集する場合、誰に何をどのように聞くべきかを慎重に考える必要があります。都合の良い情報だけを集め、他の可能性を排除しないようにする意識も大切です。この姿勢は「関心や問題意識のないところに仮説は生まれない」というマインドセットにも通じています。 市場特性の見極めは? 3Cや4Pの視点で現在のビジネス状況を正しく理解することが不可欠です。しかし、市場や業界、製品が特殊な場合には注意が必要です。例えば、医療業界ではエンドユーザーが患者であり、購入決定権を持つのは医療者であるケースがあります。広告制限のある製品については、適切な顧客設定と検証が必要です。自社だけでなく、関わるグループ施設市場を含めた3C、4P分析も有効です。 3W1Hで速さは向上? 仮説の3W1Hを繰り返すことでビジネススピードが向上します。過去と未来の仮説を分けて分析し、サイクルを回すことが必要です。たとえば、大型コンペの参加が有効だったか、その前後の効果や成功の分析、次回の見込みや採用率の変化が周囲に与える影響の予測を行います。 Excel作業改善のコツは? データの比較基準が異なる場合、データの取得、加工、単位や見え方の統一が課題になります。実際の分析開始前の準備段階でのExcel作業に多くの時間を費やすことが課題となっているため、この点のスキルアップが必要です。

「課題 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right