データ・アナリティクス入門

合宿で描く未来のマーケ戦略

方向性はどう決める? 来年度に向けた部としての1年間の方向性とTODOを検討する合宿で、今回学んだ内容を活かすことができると感じました。合宿では、現状できていることとできていないこと、そして今後必要なソリューションについて話し合いました。具体的には、今後重要になると予想される広告指標について、各ソリューションごとの導入実績を比較し、2024年の傾向を把握することが求められると認識しました。また、現状のホットなマーケティングトピックから、今後伸びるであろうKPIを仮定し、その上でどのようなソリューションを開発すべきかを検討しました。 情報はどう集める? さらに、分析においては、情報やデータの収集方法が非常に重要であると感じました。普段あまり活用していなかった社内のポータルや事例集なども積極的に利用し、必要な情報が何か、足りない情報はないかを意識しながら、学んだプロセスに沿って分析に取り組んでいくつもりです。 分析の進め方は? また、データ分析の基本として、目的を明確にし、仮説思考でアプローチすること、比較を重視すること、そしてwhat→where→why→howというプロセスで考えることの重要性を再確認しました。これらの考え方を実践することで、より具体的な分析結果が得られると実感しています。

データ・アナリティクス入門

直感だけじゃ辿り着けない未来

直感は信頼できる? 普段の仕事やデータを扱う際、経験や直感に頼った仮説が基本であったことを改めて実感しました。データ分析そのものではなく、むしろデータ収集の段階で不足している点が原因だったと考えています。この経験が、部門費などの予算策定時における変化の捉え方を再見直すきっかけとなりました。 予算根拠は正確か? 部門費の策定根拠や、今後の設備投資に関する理由付けについては、未来を見据えた考察が十分でなかったと感じています。何か異変があった場合の修理費用が予算に計上されず、過去の事例や頻度を確認することで、適正な管理につながる一手段としたいと思います。 委託実態はどうだ? 請負会社に業務を委託している現状では、作業の安定性はもちろん、雇用期間が短期に終わる点にも課題を感じています。労働内容に加え、職場環境も影響していると考え、既に委託から10年が経過している案件も多いことから、改めて状況把握から始めたいと思います。 記録整備は必要? 具体的には、請負会社で働く方々の実務経験年数や年齢層などの基本情報の収集を行い、当社を離れる理由なども可能な限り情報として集める予定です。また、設備投資に関しては、過去の作業記録のデータベース化が未実施であるため、そこから着手する方針です。

データ・アナリティクス入門

プロセス分解で見つけたヒント

なぜ分解して考える? プロセスを分解して問題の本質に迫る手法について、非常に分かりやすい事例から学ぶことができました。特に、採用プロセスの一部である中途採用面談や、顧客への提案における在庫差異の問題解決に、このアプローチを活用できると感じています。また、ABテストにおいては、条件をできる限り同一とし、検証範囲を絞るための仮説設定が重要である点も再認識しました。 採用面談、何が問題? まず、中途採用面談に関しては、自身が関与する採用活動において、プロセスのどの部分で問題が発生しているのかを明確にするため、面談調整に要する日数と採用結果の情報を人事部から収集することを検討しています。この情報をもとに、面談調整に時間がかかる原因を特定し、改善策を提言することで、採用率の向上を図ることができると考えています。 在庫の差異、どう解決? 次に、顧客への提案、特にシステム間の在庫差異に関する課題解決では、既に現状の業務プロセス分析は実施していますが、課題が発生しているプロセスの粒度が細かすぎるため、より単純化した形で説明する必要性を感じました。問題となりうる箇所を明示した上で、システム改善または運用プロセスの変更のいずれかを提案し、顧客にとって最適な解決策を提示していく考えです。

マーケティング入門

直感を味方に!ネーミング革命

なぜ直感イメージ重要? ネーミングをひとつ変更するだけで、売上が大幅に伸びるという事例から、直感的にイメージを伝えることの重要性を実感しました。 映像活用はなぜ? 自社においても、商品単体だけでなく、それを実際に使用しているユーザーを映像に取り入れることで、より具体的なイメージが伝わり、売上向上につながる可能性があると聞いています。実際、使用者そのものがその商品サービスのターゲット層を象徴するため、適切なターゲットの提示に役立つと考えられます。 ターゲットはどうする? また、ターゲット層を明確に設定し、その層に合わせたネーミングに変更する戦略は、新製品の開発に比べて、売上増加に直結する可能性があると感じました。ただし、ネーミングの変更は簡単に行えるものではなく、リブランディングは定期的に検討すべき重要な施策だと考えています。 反応はどう評価? さらに、ネーミング変更の効果は売上やSNS上の反応から確認するだけでなく、どの層に支持されているかを詳しく分析することで、ターゲットにしっかりと響いているかどうかを判断する必要があります。市場環境や顧客の意見は常に変化するため、先入観にとらわれず、さまざまな属性のユーザーからの意見を幅広く収集することも大切だと感じています。

マーケティング入門

ビジネス成功の鍵を握る顧客ニーズの把握術

顧客のニーズを把握する方法は? 「何を売るか」について非常に面白い講義だったと思う。顧客の潜在的あるいは真のニーズを売る側が事前に把握し、具体的に提示することが、多様なサービスにおいても活用できると感じた。例えば、スーツの事例において、コロナ禍での必需品であるマスクを早めに市場に投入したことが、顧客のニーズに合致して成功に繋がったのではないかと考える。また、私自身ビジネスを進める上で、事前のヒアリングを通じて必要な情報を収集し、顧客や潜在顧客に合った商品やサービスを提供することが、顧客満足度の向上に寄与すると感じている。 業務改善で考えるべきことは? 社内の業務改善の観点から見ても、医療や介護業界ではDX化が遅れている。しかし、顧客や従業員にとって無駄な業務を減らし、効率的に業務に専念できるようにすることは、ペインポイントの解消に繋がるのではないかと考える。 自分の強みをどう活かす? また、業務効率化を年単位で行っているが、できれば四半期ごとに各部署の管理職と議論し、より良いサービスの提供に専念できるようにスタッフへのヒアリングを強化したい。そして、自分自身の強みを整理し、世の中に貢献できるサービスを見つけ、将来的な起業の指針として知識を活用していきたいと考えている。

データ・アナリティクス入門

ここにあった!生存者バイアスの真実

弾痕が少ない理由は? 今回の研修で最も印象に残ったのは、戦闘機の補強に関する話でした。弾痕が多く残っている部分ではなく、むしろ弾痕が少ない部分を補強すべきという考え方に驚かされました。この事例は「生存者バイアス」と呼ばれ、帰還できなかった機体の状況を無視すると正しい判断ができないという重要な教訓を示していました。 比較対象の選び方は? また、分析の基本は「比較」というシンプルな考え方に基づいているものの、適切な比較対象を選ぶことや、見えにくいデータに注目することの難しさと大切さを改めて実感しました。 データ比較で改善策は? 私が担当しているシステム開発プロジェクトにおいては、テスト工程でのバグ検出率向上が課題です。そこで、研修で学んだ比較の考え方を活用し、成功事例と失敗事例のデータ、たとえばテスト時間やレビュー時間を比較することで、より効果的な改善策を見出していきたいと考えています。 比較難点をどう乗り越える? ただし、比較対象の条件が必ずしも揃っていないケースや、対照となる対象そのものが存在しない場合など、現実のデータ分析では困難な点もあります。こうした状況では、新しいデータの収集や、比較方法の検討をさらに深掘りしていく必要があると感じました。

データ・アナリティクス入門

データ分析で見えてくる未来へのヒント

データ分析の基礎を理解するには? データ分析を始めるにあたり、まずはデータの形式を理解し、その違いを把握することが重要だと感じました。分析に必要なデータを集め、形式に合わせた加工を施し、さらに可視化することで示唆を得る流れを認識しました。特に、データの性質をしっかり理解しないままでは、可視化しても意味がないことを学びました。 どう業務課題を探索する? 例えば、各店舗での様々な商品の契約状況から、それぞれの商品の契約者に共通する特徴を可視化したり、取引履歴と商品の契約状況の関連性を探るといった作業は、まずデータの性質を把握することから始まります。データを比較し、その特徴を掴むことで、業務課題に関連するデータが何であるかを見極めることができます。 他社事例をどう活かす? また、他社のデータ活用事例を知ることで、自社の業務に置き換えて考え、業務上の課題を発見する手がかりとすることができました。社内においても、各種システムで収集・蓄積されているデータの内容を把握し、それを整理して業務課題を解決するための手法を模索することが大切です。こうしたプロセスを経て、データの性質を十分に理解し、適切に可視化し比較することで、より良い業務改善に繋げることができると感じました。

デザイン思考入門

共感プロセスで見えた本質

デザイン思考はどう働く? 私は、自社の業務効率や生産性を向上させるために、デザイン思考のアプローチを取り入れようとしています。施策を検討する際、共感は非常に重要なステップであり、実際、経験や知識のない分野でも観察やヒアリングを通じてエンドユーザーの立場から業務を理解することが、より適切な対策を生み出す基盤になると考えています。 急ぎすぎるリスクは何? ただし、私の事例では、エンドユーザーが既に理解している業務の振り返りにとどまってしまい、次の具体的な検討段階へ早く進んでしまう危険性を感じています。そこで、共感プロセスをしっかり進めるためには、エンドユーザー自身にも共感の重要性を認識してもらい、具体的なメリット(例えば、既存業務の棚卸しなど)を実感させる工夫が必要だと思いました。 なぜ事前準備が必要? また、観察やヒアリングを通じてユーザーの深層ニーズや課題を把握することは、デザイン思考の基盤を築くうえで欠かせないプロセスです。しかし、単に行動を追うだけであれば表面的な理解にとどまる危険があるため、事前の情報収集と明確な問いの設定が重要であると考えています。今後のコース受講を通じて、その下準備の進め方についてさらにヒントを得たいと思います。

データ・アナリティクス入門

数字が語る業務改善のヒミツ

データの集約ってどうやる? データの比較法について、数字を集約して捉える方法、目で見て捉える方法、そして数式を用いて集約し関係性を把握する方法を学びました。普段何気なく実施していることの意味を理解することで、さらに大きな効果を得られる必要性を感じています。 代表値と散らばりの活用法は? また、データ加工のポイントとして、代表値と散らばりの両方を活用する事例を学びました。双方の特性を活かした可視化を上手く利用できれば、より具体的な分析が可能になると実感しています。 工数計算の見直しは? 業務改善の際に、工数の計算方法が一面的であったことにも気付きました。関わる人数や各作業の分析データが欠けていたため、今後はこれらの情報収集にも注力し、ビジュアル化した際の分析範囲を広げる可能性を感じています。 収集データの過不足は? さらに、すでに収集しているデータの過不足の確認も行いました。各個人が提出する情報を一元的に抽出するツールの開発は進んでいますが、項目に不足がないか確認し、もし不足があれば機能追加を実施します。一律に集まったデータに対しては、簡単なグラフ作成を通じて作業記録などの分析を行っていく予定です。

データ・アナリティクス入門

仮説を超えて広がる学びの可能性

仮説はどう考える? 仮説を立てる際には、ただ闇雲に考えを巡らせるのではなく、3Cや4Pといったフレームワークを有効に活用することを学びました。その上で、仮説は複数立てることが重要であると感じています。 本当に必要なデータは? また、データ収集に関しては、まず既存のデータを検討し、不足している情報がある場合に新たなデータを集める必要があると理解しました。立てた仮説に都合の良いデータだけを選ぶと説得力が欠けるため、注意深くバランスをとることが求められます。 問題の原因は何か? さらに、業務における障害分析では、問題の解決に向けた仮説の立案が主な目的となります。現状で行っている真因分析とも連動し、What、Where、Why、Howのプロセスを意識して問題を深く掘り下げることが必要だと感じました。 実践で学ぶヒントは? 実際、日々発生する障害や事象について原因を深掘りし、複数の仮説を検討する癖をつけることで、経験を積んでいきたいと思います。ただし、データ収集の方法には工夫が必要であり、過去の事例をカテゴリー分けするなど、データを整理・加工する手法の改善が求められると考えています。

クリティカルシンキング入門

会議を変える!具体的課題への挑戦

グラフの理解は難しい? 「何をすべきか考える」のゲイルでは、グラフが示す内容は理解できたものの、回答例と比べると自分の課題解決力の向上が必要だと実感しました。 会議の進行は大丈夫? また、issue特定において「一貫してissueを抑え続けることが大事」との指摘がありましたが、実際に参加する会議では、論点がずれて別のissueが議論され、結果として会議時間が延長される場面が見受けられます。今後は、発表者やファシリテーターとしてこの点に一層注意し、会議の効率化を図っていきたいと考えています。 近未来の問いは? さらに、遠い将来の問いではなく、近い未来に実現可能な具体的な問いを立てることが、業務だけでなく自分の思考整理にも役立つと学びました。同時に、自分で設定した課題を他者と共有し、同じ目線で課題解決に取り組む重要性も再認識しました。 目標設定はどう? 例えば、自分の業界や部門の課題を明確に問い、組織内で共有して同じゴールを目指す業務遂行や、業務プロセス上のissueとその解決策を、事例を収集しながら具体的な期限と共に関連部門に共有する方法を実践していきたいと考えています。

マーケティング入門

多角的学びで経営に挑戦

提案はどう説得する? マーケティングプランを加えた提案は、納得感を高めると実感しています。さらに、ファイナンスやアカウンティングなどで全体の状況を網羅することで、意思決定者の立場からの提案が可能になると感じました。 データは十分かな? マーケティングは顧客重視のため、定量化が難しい面があります。そのため、データの収集と分析力を向上させる経験を積む機会を大切にしていきたいと思います。 業務提案はどう見る? 新規業務提案にもこの考えを活かし、将来的な起業も視野に入れた上で、短期と長期の仕組み作りを重視します。大手の事例だけでなく、中小企業の成功例や失敗例にも学ぶために、書籍や動画サービスを通じて継続的に情報を取り入れる習慣を続けていきます。 書籍の読み方は? また、購入した書籍は全て読むのではなく、目次やダイジェストを参考にして本質を見極め、必要な部分を深く読み込むように工夫します。グロービス終了後も、時間を有効に活用して学習を継続し、部署内でのアウトプットの機会を通じて知識の定着を目指します。
AIコーチング導線バナー

「事例 × 収集」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right