クリティカルシンキング入門

考えを自由にする「もう一人の自分」育成法

思考の制限を解放するには? 人は無意識に考えやすいことや考えたいことを思考してしまう傾向があります。そして、自由に考えることが許されているにもかかわらず、自らの思考に制限をかけることがあります。この制限を解放するためには、自分の考えを監視する「もう一人の自分」を育てることが重要です。このためには、物事を考える際にゴールを意識し、客観的に判断することが求められます。 クリティカル・シンキングの活用法は? 新規のお客様にアプローチする際、どのような手法でどのようなお客様に接触するかを考えるには、クリティカル・シンキングを活用することが有益です。例えば、お客様の年齢層や会社の業種、家族構成などを考慮する際には、この思考法が役立つでしょう。 法人向け営業手法の選び方 法人に対してアプローチする際には、テレアポなのか飛び込み営業なのか紹介営業なのかといった手法を選ぶ必要があります。また、業種、地域、売上、利益、社長の年齢、従業員数など、さまざまな要素を考慮することが求められます。 個人へのアプローチ方法をどう考える? 個人に対してアプローチする際には、友人へのアプローチなのか、飛び込みなのか、紹介営業なのかを選びます。そして、年齢層、家族構成、性別、子どもの有無、地域などの条件をもれなく考えることが重要です。

データ・アナリティクス入門

実践で切り拓く学びの扉

A/Bテストは何が見える? A/Bテストは、2つの施策を比較し、どちらがより適しているのかを実際のユーザー行動に基づいて判断する有効な手法です。アメリカ大統領選などの大規模な事例でも用いられている点が印象的で、仮説だけでなく実績に裏打ちされた評価がとても参考になりました。 演習で何を実感した? また、演習を通じて、問題の各要素をステップごとに分解することで、どのデータを抽出すればよいかが具体的に見えてきます。こうしたプロセスは、原因の特定を容易にし、問題解決に向けた新たな視点を提供してくれました。 業務再構築はどう進める? 社内業務の再構築にあたっては、まず課題を洗い出し分類した上で、それぞれの課題のどこに原因があるのかを要素ごとに分解して検証する方法が効果的だと感じました。Howに飛びつく前に、What、Where、Whyの各段階を踏むことで、より論理的に解決策を見いだすことができると思います。 原因探しで見つけたヒントは? さらに、課題に対する取り組みでは、要素を段階ごとに書き出す過程が、問題自体の理解を深め、原因の特定に大いに役立ちました。その後、適切なフレームワークを用いて目的に沿った仮説を立て、多角的な視点から検討することで、より実践的な解析が可能になると実感しました。

データ・アナリティクス入門

具体例で感じる数値分析の魅力

精緻な数値はなぜ? データの数値が精緻であることの重要性について、具体例を通じてしっかりと学ぶことができました。ただ単に平均値を算出するのではなく、その数値が持つ意味や背景を理解することが、正確な分析と意思決定に直結する点が印象的でした。 目的分解は本当に必要? また、目的を明確にした上でデータを要素に分解し、具体的な項目ごとに比較することが不可欠であると実感しました。単一の指標だけでは十分な判断材料とはならず、複数の視点からデータを総合的に見直すことで、初めて意味ある洞察が得られると理解しました。 比較手法には何が効く? さらに、PC購入の事例などから、データの比較が意思決定において大きな役割を果たすという点が強調されました。これを踏まえ、自身の業務に直結する営業データの分析―受注数、流入経路、企業特性、自社取引実績、月ごとのニーズや競合の状況など―を、目的に沿ってExcelで整理しながら分析する手法が非常に有用だと感じました。 多角的意見交換はどう? グループワークでは、異なる業界や職種の仲間と意見交換を行うことで、多くの刺激を受けることができました。多様な視点に触れることで、自分の分析方法や業務運営に対する考え方に新たな気づきを得ることができ、非常に有意義な学びの場となりました。

データ・アナリティクス入門

業務に役立つ分析スキルを身につける方法

予測を立てる重要性は? グラフなどの資料を見る際、自分なりの予測を立て、仮説を立てて実態との違いを確認することは重要です。このプロセスでは、仮説の誤りをマイナスに捉えず、新たな課題や問題に気づく機会として扱うことが求められます。 分析のサイクルをどう回す? 分析の基本である「目的・仮説・データ収集・仮説検証」のサイクルを回すことについては、業務で分析を行う際に疎かになっていたと反省しました。数字に集約した分析を学ぶなかで、代表値(単純平均、加重平均、幾何平均、中央値)や散らばり(標準偏差)のそれぞれが適した状況で使い分けることが重要であると再認識しました。 患者数低下の原因とは? 紹介患者数の低下対策を立案する際、まず分析のプロセスをしっかりと踏むことが大切です。特に目的を明確にすることで、求めたい結果を得るためのポイントとなります。次に、どの視点で分析を進めるかを判断し、グラフや数字を用いて実行していきます。 具体的には、紹介患者数低下の分析では、近隣医療機関からの紹介の減少が課題(目的・問い)となります。減少の要因について仮説を立て、その後、取るべき分析の視点(インパクト・ギャップ・トレンド等)を考慮してデータを収集し、グラフ化・数値化します。最後に、分析結果と仮説を検証し、対策を立案します。

データ・アナリティクス入門

データで紡ぐ成長の物語

データ整理は安心? データの切り出し方について、以前は数字が欲しいならこれといった感覚で扱っていたため、具体的に整理する作業が非常に有意義でした。成長率の求め方についても久しぶりに見直し、これまで間違った計算方法を用いていたことに気づけたのは大きな収穫です。 分布分析の効果は? 定量分析の手法として、代表値と分布に注目し、データをビジュアル化してより理解しやすくする方法を学びました。平均値が外れ値の影響を受けやすいという点に加え、単純平均、加重平均、幾何平均、中央値といった代表値や、標準偏差を用いた散らばりの把握、さらにはヒストグラムでばらつきを表現するテクニックが印象に残りました。 データ活用の秘訣は? また、ECにおける購入者分析や売上、アクセス解析にこの知識を活かせると感じました。特に、複数の商材を取り扱う場合のデータ集計処理について、最終的に求める数値や、それをどのようにビジュアル化すれば良いのかを意識したデータ分析ができるようになりました。 感覚から論拠に? これまで感覚的に行っていたデータ処理について、なぜその手法を用いるのかを説明できるようになり、自信がつきました。今後は月次のアクセス状況の説明にも、より論拠をもって提案し、販売方針や経営判断に結びつけていければと考えています。

データ・アナリティクス入門

仕事が変わる学びのヒント

a/bテストはどう? 複数の打ち手が存在する場合、どの選択肢が有効かを判断する上で、a/bテストを活用する方法が効果的です。現状、すぐに取り入れられる業務は思いつかないものの、WEBサイトを活用した効果測定が必要な際には、積極的にこの手法を取り入れていきたいと考えています。 自己訓練の意義は? また、業務に限らず日常生活においても、what-where-why-howの視点を意識して自己訓練を重ねることで、分析能力の向上が期待できると感じています。 障害分析はどう? さらに、このwhat-where-why-howの手法は、障害分析から品質向上のための打ち手を検討する業務において、非常に有用です。さまざまなデータを収集し、仮説を立てながら具体的な対策を検討し、実践していくというプロセスは、日常業務においても積極的に取り入れていく所存です。 対象選定の方法は? まずは、打ち手が必要な対象の選定から始めたいと考えています。現状、日々さまざまな障害が発生しているため、効率よりもまずは障害が削減できる対象を明確にした上で、詳細な分析に取り組んでいくつもりです。そして、学んだ内容を個人のスキルに留めず、職場全体で共有することで、社内の共通ノウハウとして全体のレベルアップにつなげたいと思います。

データ・アナリティクス入門

ゼロから始める客観分析術

どの分析方法が有効? 問題を特定する際のアプローチについて、分類や分解の手法、考え方の基本を身につけることで、さまざまな課題に対してゼロから悩むことなく、正しい分析を進められると実感しました。学習の中ではプロセスの分解に重点を置いていましたが、他の方法についても幅広く覚えておきたいと考えています。 提案の見直しは必要? 実業務においては、顧客への提案で解決策ありきで進めてしまうケースがあり、都合の良い分析になってしまうことがあります。こうした提案は初めは良い印象を与えるかもしれませんが、本質的な課題解決にはつながらず、長期的には評価を下げるリスクがあるため、業務の進め方を見直す必要があると感じました。まずは、これまで学んだ分析のステップに基づき、客観的かつ正確な分析を実行した上で、最適な解決策を提案することが重要だと思います。 行動計画はどう決める? 具体的な行動としては、実業務で特定のサービスに依存せず、客観的で正確なデータ分析を徹底し、複数の選択肢を比較検討することが求められます。そして、適切な判断基準を設定して最適な解決策を提案することを意識します。加えて、提案後の振り返りを行い、実施した解決策の効果をデータで検証する仕組みを整えることで、継続的に提案の機会を創出できると考えています。

データ・アナリティクス入門

仮説とデータが紡ぐ物語

分析の始まりはどう? データ分析は、まず解決すべき問題を明確にし、最終的な結論のイメージを持つところから始まります。すなわち、最初に仮説を立て、what、where、why、howという流れに沿って必要な情報を整理することで、分析の方向性を定めることが大切です。 データはどのように収集? 次に、必要なデータを収集します。その際、実際の数値と割合の両面から確認を行い、一方に偏らないバランスの取れたデータ把握を目指します。必要な情報が不足している場合は、自らデータを集める方法も検討すべきです。評価方法においては、あいまいな表現や中間的な回答を避けることが重要です。 図表でどう伝える? 収集したデータは、次に加工して見やすい図表などにまとめます。どのような表現方法がデータの散らばりや相関を直感的に理解させるかを判断し、情報を具体的かつ明確に提示することが求められます。 仮説はどう再検証? そして、整理されたデータをもとに、当初の仮説に沿って分析を進め、発見に結びつけます。この過程では、what、where、why、howの各側面で原因と結果を再確認し、客観的な視点で全体のストーリーを見直すことが大切です。また、既存の仮説にとらわれず、新たな価値ある仮説の構築に努めることも求められます。

戦略思考入門

迷い捨てROIで勝つ判断の秘訣

判断基準はどう選ぶ? 選択(捨てる)ためには、判断基準を持ち、複数の視点から仮定を置いて考えることが大切です。また、ROI(投資効果)も踏まえた上で判断する必要があります。顧客の利便性を第一に考え、伝統や惰性に流されず、専門家に任せるという意識も重要だと感じました。 バランスはどう取る? 優先順位の考え方においては、トレードオフの概念を学びました。つまり、何かを得るためには何かを犠牲にするということです。複数の要素が存在する場合、両立が難しいときには、それぞれのバランスを取り、効果が最大化するポイントを見つけることが求められます。ある要素同士が互いに相殺し合う場合には、どの要素に注力するかを明確にして、メリハリのある資源配分を行うことが最善の方法だと考えました。 戦略改善のコツは? 限られた時間の中で、常に優先順位を意識して作業を行っています。実際には捨てる選択をすることが多いと感じますが、その順位の付け方については、今ひとつ経験則に頼っている部分も否めません。日々の作業は何とか回っているものの、未来に向けた戦略を立てる際には、判断基準をより明確にする必要があると実感しました。今後は、各要素を数値化し、ROI(投資効果)をしっかりと分析することで、より合理的な判断ができるよう努めたいと思います。

データ・アナリティクス入門

多角的視点で挑む学びの挑戦

プロセス分解って何? プロセスを分解するという観点を学びました。3Cや4Pのフレームワークを用いて、どの切り口で分析するかまでは考えることができたものの、その視点から仮説を立てる際に、設問の誘導がなければ行き詰まる可能性があると感じました。最終的には、4Pでプロモーション方法に着目し、3Cで顧客視点から行動パターンやプロセスを考えるという方法を組み合わせるアプローチを理解しました。 学びは販促にどう活かす? マーケティングの面では、従来の主要な事業である顧客設計品の生産・販売に加え、近年では新商品の市場投入が進んでいるため、学んだ考え方を販促活動に活用できると感じました。どの業界のどの顧客にどのようにアプローチし、望ましい結果を得るかを考える際に、今回の手法が大いに役立つと思います。 計画検証はどうすべき? また、投資検討の面でも、現状は確定した案件に基づいて投資判断がなされていますが、今後は未確定案件に対する投資検討にも学んだ手法を生かし、効果やリスクの検証を行っていけると考えています。さらに、担当者との定期的な打ち合わせで共有された活動計画について、計画が効果的に進んでいるか、もし計画通りに進んでいなければその原因や改善策を検討する際にも、今回学んだアプローチを活用していきたいと思います。

マーケティング入門

伝える力で紡ぐマーケの未来

マーケ思考を知る? WEEK1を通じて、マーケティングは単なる「売るための技術」ではなく、顧客にとっての価値を念頭に置いた思考法であることを学びました。従来イメージしていた以上に、対象や考慮すべき範囲は広く、「誰に」「何を価値として」「どのように届けるのか」を考えることこそがマーケティングだと再認識しました。また、「良いものを作れば売れる」という単純な考え方には限界があると痛感し、情報の収集や分析も、相手が意味を見出せる形で提供されて初めて価値が生まれるのだと気づかされました。 伝える工夫は? 一方、私の業務では「伝える・報告する」という要素が非常に重要です。伝えるべき相手を顧客と捉え、「どの判断に使われる情報なのか」や「どの視点が求められているのか」を意識することで、情報の選び方や提示方法に工夫を凝らすことができると感じました。今後は、依頼内容をそのまま受け取るのではなく、その背景や目的を理解し、日常的に市場動向や事業環境に目を光らせる姿勢を大切にしていきたいと思います。 課題の向き合い方は? マーケティング的思考を身につけたいと考える中で、「何からどのように考えればよいのか』『どこまで深めるべきか」といった点で迷うことがあります。皆さんはこの課題について、どのように捉えているのでしょうか?

アカウンティング入門

アカウンティングで高める企画力と報告力

アカウンティングの新視点は? アカウンティングという言葉は、元々「説明する」という意味を持つことを知り、一つの新たな視点を得ました。特に説明を行う際には、定性的な情報ではなく定量的なデータが重要であることを学びました。また、毎月作成している月次報告書がどのような意義を持っているのかについても理解が深まりました。 財務分析の実感は? 財務諸表を読み解けるようになることで、企業の活動がどれだけ上手くいっているのかを判断する能力が身につくと感じています。ただし、これはある程度の経験や慣れが必要であるとも実感しています。 提案方法のヒントは? 今後、企画や新しいテーマを提案する際には、アカウンティングの考え方を取り入れていきたいと思います。具体的には、説明資料を作成するときに、この視点を盛り込む方法を模索しようと考えています。また、月次報告書や半期の成果報告においてもアカウンティングの概念を活用し、報告内容を適切に判断する力を養いたいと思っています。 知識吸収の工夫は? さらに、本や他の資料からもアカウンティングに関する知識を積極的に吸収し、実務に生かしていくつもりです。上司や関係者がどのような報告を期待しているのかを考慮することにより、より質の高い報告・説明を心がけたいと思います。
AIコーチング導線バナー

「判断 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right