クリティカルシンキング入門

自問自答で磨く本質の力

なぜ言葉で整理? 日常生活でクリティカルシンキングを習得するためには、ただ自己の経験に頼るのではなく、「なぜその考えに至ったのか」「どの目的で主張しているのか」を具体的に言語化することが大切です。問いや課題に対して何度も自問することで、思考の過程を整理し、より明確なアウトプットを目指す必要があります。 本当に客観的? また、自分の思考の癖に気づき、思い込みや直感だけに頼らず、周囲の意見も客観的に捉えることが求められます。常に「本当にそうなのか?」と自問自答し、書き出す反復練習を続けることで、ディスカッションやフィードバックを通じたブラッシュアップが可能となります。 どうやって深掘り? 今週は、表面的な情報や過去の経験に縛られることなく、顧客の動向、市場の状況、そして現状の課題を深く掘り下げることで、物事の本質を見極め、最適な提案や判断ができる思考力を磨くことを目標としています。 隠れた真意は? 所属する部署では、まずお客様が表向きに「必要ない」と示す行動や言葉の背後にある真のニーズや本質的な課題に目を向け、具体的な戦術に落とし込む行動を強化します。次に、常に「なぜ?」と問い、表面的には見えにくい問題を洗い出し、根本原因の追及を行いながら、説得力ある提案をすることを目指します。そして、情報を客観的・論理的に分析し「本当にそれで正しいのか?」を問い続けることで、誤った判断や思考の偏りを防ぐ訓練を重ねます。 前提を再確認? さらに、多様な顧客ニーズや市場変化に対して、過去の成功体験に固執せず、前提条件を再確認する柔軟な考え方と提案力を養うことも重要だと考えています。 何を継続すべき? 最後に、クリティカルシンキングを磨くための日常的な反復練習において、無理なく継続できる具体的なアイディアや実践方法があれば、ぜひ教えていただきたいと思います。

クリティカルシンキング入門

深掘りの習慣で得た視点の力

深く考える習慣をどう養う? 物事を深く考える習慣を身につけることが大切だと感じました。表面的な情報にとどまらず、本質や意図を常に考える姿勢を保ちながら、鋭敏な感性を持つことが重要です。物の見方も偏らず、多様な視点で捉える姿勢が大事です。新しい発見や視点から考えることで、これまで気づかなかった発見に出会えるのではないかと思います。また、感情に流されることなく、感情的にならずに判断することが求められます。これらのプロセスを経て、質問する力がつき、自信も生まれるでしょう。こうした過程が、正解に至るためのプロセスであり、それこそがクリティカルシンキングだと感じています。 IT業界での活用法は? 私はIT業界に従事していますが、問題解決やトラブルシューティングの場面でこの考え方が役立ちそうです。エラーが発生した際にはまず「その本質は何か?」と考えることから始めます。また、要件定義や仕様書作成の際にも、顧客の要件や要望を本質から理解することで、顧客要望の実現度に比例した品質を追求できます。プロジェクトの意思決定でも、複数の選択肢からベストなものを判断する助けとなるでしょう。具体的な例では、コードレビューが挙げられ、そのロジックが何を実現しようとしているのかを把握するのに有効です。リスク評価やセキュリティ対策など、ほぼすべての場面でこの考え方が役立つと感じています。 具体的なスキル向上法は? まず、明確な目標を設定し、どの業務や場面に適用するか課題を設定します。次に情報収集を行い、報告する情報や受け取る情報の正確性を確認します。その際、情報を疑ってみたり、批判的に見る癖をつけます。話をする際には複数の視点を持ち、問題を小さな単位に分解して考える習慣をつけます。また、感情的になるのを避け、感情と事実を分けます。これらを習得し続けてスキルを磨くよう努力を続けます。

クリティカルシンキング入門

踏み込むデータ、広がる発見の世界

データと本気で向き合う? データの用い方や見せ方について再確認でき、また新たな発見を得ることができました。従来は説得力や妥当性を高めるためにデータを利用してきましたが、今回の講習では「データとの向き合い方」自体に踏み込むことで、さらに可能性が広がると感じました。踏み込むというのは、データを分解・分析し新たな発見につなげることを意味します。これまでは、一定の目的が達成できればそれ以上深堀りしなかった自分を反省し、今後は偏りを減らしてより深く分析することで、発見の数や他者への探求の深さ、そして説得力の向上につなげたいと思います。単に表面的な理解で終わるのではなく、データから何が見えているのかを追求していく姿勢が大切だと感じました。 業務で分析は活きる? また、業務においては分類・分解・分析が多くの場面で役立つと実感しました。たとえば、目標設定では、市況や需要予測に基づいてシェアや販売量を設定し、その根拠となるデータや分析結果をもとに説明することで、計画の信頼性が高まります。実施計画においては、マーケティング戦略や営業活動の手段、ターゲット、期待できる効果、効果が現れるまでの時間などを細かく整理し、実行者、評価者、受益者それぞれとの連携を明確にすることが可能です。さらに、効果測定では、シェアや販売量・金額と実施計画との因果関係を明確にして、次のアクションの策定や判断につなげることができます。 分析手法を検討する? こうした業務プロセス全般において、データの分類・分解・分析は有効な手法です。具体的には、説明が必要な場面で、利用可能なデータや参考になる情報がないかを常に意識し、検討することが大切です。たとえば需要予測においては、単に過去の推移を見るだけでなく、季節要因や提供者ごとの特徴も踏まえて分析することで、より実効性のある判断が下せると感じました。

戦略思考入門

選択と集中で業務改革を実現!

心情と冷静な分析のトレードオフとは? 現実では、付き合いの長さや関係性、過去の経緯など多くの要素が絡み合い、心情的に優先度を決めていることがあると気づきました。冷静に分析することで、本当に優先度が高いかどうかを判断していく必要があると感じました。 なぜ取捨選択が重要なのか? 1. 捨てることが顧客の利便性を増す場合がある。 2. 昔からの惰性に流されず、常に新しい意見を取り入れることが重要です。トラブルや環境悪化が改善につながることもあります。 3. 餅は餅屋に任せるべきで、垂直統合のデメリットがメリットを上回ることがあります。思い切って専門家に任せる方が良いです。 新メンバーの意見をどう活かす? これらの選択を実践するうえで、3つの観点は当たり前だと考えがちですが、実行に移すのは難しいことがあります。新メンバーの指摘から多くの気づきを得ることができるため、経験豊富なメンバーだけでなく、新しいメンバーの意見を取り入れる機会を増やしたいと考えています。 業務分担と体制はどう見直す? 具体的な事例や惰性から抜け出す重要性についての気づきがよく表現されています。また、新メンバーの意見を積極的に取り入れる柔軟性も素晴らしいと感じます。思考のプロセスや場面をもう少し詳細に描くことで、更なる改善が期待できるでしょう。 正に今、次年度以降の業務分担や体制を整理しており、惰性で継続している業務がないか見直しています。新しいメンバーの意見は的確で、「選択」の考え方を実感しています。社員が担う業務と業務委託する範囲を明確にし、二重のコストや負担を避けるために整理を進めています。組織を統合し、スケールメリットを打ち出すために一時的に業務が複雑になっていますが、優先順位をつけ、継続すべき業務と見直すべき業務を分類していきたいと考えています。

データ・アナリティクス入門

数字から紐解く現場の実情

データ分析はどう見る? 今週はデータ分析の基本的なアプローチについて学びました。データを評価する際は、まず「データの中心がどこに位置しているか」を示す代表値と、「データがどのように散らばっているか」を示す散らばりの2つの視点が大切であることを実感しました。代表値としては、単純平均のほか、重みを考慮した加重平均、推移を捉えるための幾何平均、極端な値の影響を排除する中央値などがあると理解しました。また、散らばりの具体的な指標として標準偏差を学び、データが平均からどの程度離れて散らばっているかを数値で評価できることが分かりました。 現場での活用方法は? これらの知識は、実際の現場での作業時間、コスト管理、安全管理などに役立つと感じました。例えば、複数の現場における作業時間の平均を求める際、単純平均だけでなく、現場ごとの規模に応じた重みをつけた加重平均を用いることで、より実態に即した傾向を把握できると考えます。また、標準偏差を利用することで、同じ作業工程でも現場ごとのバラつきを数値で示し、ばらつきが大きい工程には重点的な対策が必要であると判断しやすくなります。数字の羅列だけでなく、背景や偏りを理解しながらデータを多面的に捉える習慣の重要性を再認識しました。 次のステップは何? 今後は、各現場における作業時間や工程進捗、コストなどのデータを収集し、単純平均だけでなく加重平均や標準偏差も併せて算出することから始めます。特に、同じ工程内で標準偏差が大きい場合は、どの現場で大きなばらつきが見られるのかを明らかにし、その現場の状況や原因を直接確認することで、関係者と改善策を議論します。また、社内報告でも単なる平均値だけでなく、ばらつきや偏りをグラフなどで視覚的に示すことで、現場間の違いや課題を分かりやすく伝える資料作りに努めていきたいと思います。

クリティカルシンキング入門

伝わる設計力で心を動かす

スライド表現の工夫は? 今回の学びを通じて、スライドは単に情報を整理するだけでなく、伝えたいメッセージをどう設計し、視覚的に届けるかを考えるための道具であると実感しました。言葉の選び方や装飾の工夫、情報の順番、グラフの形式など、細部が伝わりやすさに大きな影響を与えることに気づきました。 構造思考の必要性は? 一方、実務では、コンテキストや課題構造を捉えた構造化思考モデルを用いて議論することが多いため、思考の流れや全体像を相手と共有することが求められます。今回の学びは、そのような場においても「何をどう見せると伝わるのか」という視点を意識するヒントとなりました。 伝わる力強化の秘訣は? 今後は、スライドと構造化思考モデルの双方に共通する「伝わる設計力」をさらに高め、意思決定を支えるための視覚的な意味の構造を効果的に伝えるビューモデルの設計に取り組んでいきたいと考えています。具体的には、課題の背景や構造、検討すべき施策、期待されるインパクトを整理し、キーメッセージを短く明確に表現することを第一歩として、経営層との対話に活かせる資料作りやワークショップの設計を進める予定です。 提案資料やワークショップの設計においては、「このコンテンツで意思決定者にどんな行動を促すのか」「どのような構造で納得を得るのか」を明確にした上で、ビューの順序設計や視線の流れ、強調すべきポイント(色、太字、枠、矢印など)を意図的に取り入れていきます。特に、判断の分かれ目となる構造や施策の選択肢を、比較しやすい形でビジュアル化し、なぜそれが妥当なのかを自然に伝えられるよう心掛けます。 来週予定している経営者向けのワークショップでは、重点戦略の構造化や目標設定の意図をいかに伝えるかをポイントに、今回の学びを反映したビューモデルの設計と実践に挑戦するつもりです。

クリティカルシンキング入門

切り口を変える学びのヒント

どの分け方が効果的? データを分解する方法について、実際に手を動かしながら学ぶことができました。表からグラフを作成する際、従来は区切りのよい数字(例:5刻みや10刻み)で分類していましたが、特徴が際立つ分け方を検討することが大きな学びとなりました。 なぜ来場数が減少? また、博物館の来場数の減少原因を分析する中で、たとえ特徴的な傾向が見えても、その結果だけに安心せず「本当にそうなのか?」と別の切り口から検証することの大切さを実感しました。 どこでつまずいた? ①お問い合わせの原因分析では、顧客がどこでつまずいているかを考える際に、MECEで学んだ「プロセスで分ける」手法が活用できそうです。どの工程で問題が多いのかを明確にすることで、根拠に基づいた対応策を検討することが可能だと感じました。 要望整理で新発見? ②要望リストの整理に関しては、従来は顧客の要望が多い順に整理していましたが、顧客の属性や規模など、別の切り口でも考えることで新たな気づきが得られ、優先順位を決める際に役立つ情報が得られると感じました。 仕様調整はどう扱う? ③仕様調整については、システム上対応可能なものの、影響範囲が大きく判断が難しい課題を抱えています。来週のミーティングに向け、MECEの三つの切り口を活用して影響範囲を漏れなく洗い出す予定です。優先度の高いこの項目から着手し、ミーティングまでに発生する可能性のある事象を整理し、そのうえで課題として発生しそうな点も含めた資料を作成します。 1on1で何を伝える? また、①と②に関しては、1on1の場で上司に学びを伝える予定です。特に、①については、まず自分用のメモを作成し、顧客がどのプロセスにいるのかを把握してから対応策を検討する訓練を行います。

アカウンティング入門

バランスシートで見つけた経営のヒント

資金調達はどうする? 貸借対照表は、資金調達方法と資金の使い方を示す重要なツールです。自身の事業コンセプトを実現するためには、まず「資金調達方法」として、負債(流動負債・固定負債)と自己資金の二点を意識することが必要です。負債の場合、元金や利子の返済が求められるため、確実な現金の確保が不可欠です。 資金の使い方は? また、資金の使い方は、1年以内に現金化される流動資産と、1年以上かかる固定資産に分けられます。事業コンセプトに合わせて、それぞれの比率が変動することを念頭に、各分類の金額の比重を確認すると、経営判断の材料にしやすくなります。 割合とバランスは? 貸借対照表の示す各項目の割合をしっかり捉え、事業や業種に応じた適正なバランスを検討することが大切です。たとえば、毎月の返済が求められる場合、返済分を利益として確保するキャッシュ創出が必要になります。自己資本率や流動比率などの数値を参考に、どの状態が適正かを判断できるようにすることも重要です。 実践で活かすには? さらに、資金調達方法や資金の使い方が具体的にどのように事業に貢献しているのか、詳細に考えるとより実践的です。融資などによる資金調達や、運転資金、設備投資への活用など、事業ごとに最適な比率が求められるため、理想的なバランスを実現するためのステップを考察することが重要です。 会計分析はどう? また、月次会計の説明や決算報告書の分析において、B/Sの仕組みが理解できると業務の全体像が明確になり、事業コンセプトとのつながりを説明しやすくなります。実際の数値の動きを分析し、先輩からのフィードバックを受けながら分析能力を向上させることも、学びを深める上で有益です。さらに、関連する書籍を読んで知識の幅を広げることも、今後の経営判断に役立つでしょう。

データ・アナリティクス入門

問題解決のプロセスで成果を出す方法

「Why」と「How」の探求は? 問題解決の4つのプロセスのうち、最後の2つである「Why(なぜ)」と「How(どのように)」について考えました。問題の原因を明らかにするために、プロセスを分解し、どの段階に問題があるのかを特定します。そして、解決策を検討する際には、複数の選択肢を洗い出し、それぞれの根拠を持って選定します。 学びをどう生かすか? これまでの学習でも、都合の良いデータばかりを集めないことや、仮説思考で柔軟に考えることの重要性を学んできました。同様に、「How」についても決め打ちせず、複数の選択肢を洗い出し、判断基準を設け、重要度で比較して解決策を選ぶようにします。 A/Bテストの手法とは? また、A/Bテストについても学びました。複数の案を条件を揃えて比較し、評価する手法です。複数の案を実際に試し、反応を確認しながら仮説検証を繰り返して評価します。ある事例では、スピードが重要で3ヶ月も待てないため、同時にランダム表示を選択しましたが、条件を揃える理由に納得しました。 黒字化への挑戦は成功? ちょうど今週、この学びを生かす機会がありました。自部門の数字が黒字にならない原因を考える場面があったのです。これは長年の問題で、まだ解決に至っていません。今週の学びを基に、原因や解決案を決め打ちせず、プロセスに分解し、複数の仮説を立て、根拠となるデータを示しながら解決策に向けた対策を考えていきたいと思います。 残業時間の原因は何か? 最後に、自身の月々の残業がなぜ80時間に達してしまうのかについても、4つのプロセスを用いて考えてみることにします。さらに、Q2で記載した問題の原因について、ある程度仮説を立てています。それらの仮説が正しいかどうか、データを用いて分析することを早速始めてみます。

戦略思考入門

数値でひもとく戦略のヒント

勉強内容はどう感じ? 今週の実践演習では、非常に勉強になる内容が多くありました。最初に提示された表や設問の説明だけでは、どの顧客に注力すべきかが直感的に判断できませんでした。しかし、数値を活用して分析することで、選択すべき顧客が明確に浮かび上がってくる作業はとても面白かったです。 利益率の意味はどうなる? 今回は時間当たりの利益率にフォーカスしていましたが、分析の軸が変われば結果も大きく異なるため、あらかじめ会社全体の戦略として何を重視するかを決定しておくことが重要であると感じました。 軸指標はどう活かす? また、フォーカスした軸に関する指標を別途算出するという手法は、戦略における取捨選択が主目的ではなかったものの、これまで無意識に行っていたことでもあり、今後の戦略検討に活用できると実感しました。 提案と見積りはどうする? 例えば、新たなプロジェクトの提案や見積もりの段階では、コスト削減と機能向上のトレードオフに直面することが考えられます。その際は、以下のような具体的な行動を実践していきたいと思います。 (1) プロジェクトの要件を整理し、コスト削減と機能向上がトレードオフの関係にあることを明確にする。 (2) 効果の最大化、すなわちコストと機能のバランスを踏まえ、どちらを優先すべきかを判断する。 (3) コスト削減を優先する場合は、必要最低限の機能に絞り込む。 (4) 機能向上を優先する場合は、追加のリソースを確保し、顧客のニーズに応える機能を実装して満足度の向上を図る。 (5) プロジェクト終了後には、選択した内容とその結果を評価し、次回以降のプロジェクトへの課題や参考点を整理する。 以上の経験を踏まえて、今後の業務改善につなげていきたいと思います。

戦略思考入門

しつこく考え抜く戦略の極意

戦略活用の難しさは? 戦略に関する知識を得ることは簡単ですが、それを実際に活用する際には多くの困難が伴います。ただ単に表面的な発想に頼らず、しつこく考え抜くことが重要です。また、なぜ大企業がその案をこれまで実施しなかったのかを理解することも、戦略策定には欠かせません。自分が最初に思い付くものは稀で、多くの場合、大手や競合も同じアイデアに至ったものの何らかの理由で実現していない可能性があります。自社でできる理由を見つけ、それを基に差別化を図ることが重要だと感じました。 提案の根拠は何だろう? 施策を提案する際は、自社がそれを実施できる根拠をしっかりとつなげる必要があります。現代においては、リソースが限られ、従来のように市場の先を行くリーダー戦略を活用するのは難しいです。初期投資や損益分岐点をしっかりと試算し、どのタイミングでどうであれば成功か失敗かの基準を定めることが大事です。これらの基準を前もって設定しておけば、冷静な判断軸を持てます。そのため、これを意識していくことが必要だと考えます。 徹底調査の意義は? また、妥協せず徹底的に調査する姿勢を持つことも重要です。今後、業務において提案する機会がありますが、その際には自分のアイデアに対して常に批判的な視点を持つよう意識するべきです。「なぜ」を繰り返し問い、批判的に思考することで、より正しい提案を進めていくことができます。 成功基準の決め方は? このプロセスには、以下のステップが重要です。 1. 仮説が論理的に固まるまでしっかりと調査・分析を続ける。 2. 批判的思考を用いて、反対意見に対する答えを十分に検討する。 3. 競合や大手企業に対する対策や、それができない理由を考える。 4. 実施前に成功と失敗の指標を設定する.

データ・アナリティクス入門

仮説から挑む数字の物語

仮説はどこから来る? 分析の基本は、まずさまざまなデータを比較することにあります。細かなデータやグラフを確認する前に、自分なりの仮説を立てることが大切だと感じました。 3つの軸は何が違う? ここでは「プロセス」「視点」「アプローチ」という3つの軸が重要です。プロセスでは、目的を明確にし、仮説を立て、データを収集して、その仮説を分析により検証します。視点については、インパクト、ギャップ、トレンド、ばらつき、パターンなどに着目します。そしてアプローチとして、グラフや数字、数式を活用する方法が挙げられます。 可視化で何が分かる? 比較のための可視化には、数字に集約する方法、目で見て把握できるようグラフ化する方法、さらには数式にまとめる方法があり、状況に応じて適切な手法を選ぶことが効果的です。 代表値はどう見る? また、データを見やすくするためには「代表値」と「分布」を確認することがポイントです。代表値には単純平均、加重平均、幾何平均、中央値などがあり、ばらつきを把握するには標準偏差が有用です。特に、95%のデータが含まれるという2SDルールは、分析の信頼性を判断する際に役立ちます。 ノーム値は意味ある? クライアントのノーム値を算出して、予算シュミレーションに活用する手法も魅力的です。さらに、業界ごとにどの枠が効果的か比較検証することで、より適切なアプローチを模索することが可能だと思います。 実数値で検証できる? 実際のデータを利用してノーム値を算出する試みは、非常に価値があると感じます。社内にある関連データの算出方法や分析手法を参考にしながら、実数値での検証を進めることで、より実践的な知見が得られるでしょう。

「判断 × 表」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right