クリティカルシンキング入門

データ分析の新たな視点を発見!

データの見方はどうなる? データの視点やグラフの表示形式が異なるだけで、見方が大きく変わることを実感しました。データ分析を行う際、まず仮説を立て、その仮説に基づいて情報を得るための切り口を考えたいと思います。逆に、他者が行ったデータ分析の結果を見るときは、その結果やグラフをそのまま信じるのではなく、見落としていることがないかを注意深く確認することを心掛けたいです。 顧客アンケートはどう見る? 業務で顧客アンケートを分析する機会が多いため、分析時に複数の観点から試してみたいです。また、サービス改善を設計するときにも、データを根拠にした設計ができるように役立てたいです。特に定性的データ、つまり自由記述のデータをどのように分析していけばよいのか、これからさらに学んでいこうと思います。 定性と定量の使い分けは? アンケート分析に関しては、事業部での週次ミーティングで報告することが多いため、その際には複数の観点からの分析結果を提示できるようにしたいです。また、定性的データの解釈に関しては、単独で分析するのではなく、定量的データと組み合わせて客観的に分析できるように努めたいと考えています。

データ・アナリティクス入門

実践が磨くデータ分析の極意

分析の目的は? データ分析の基本は、正確な手法の選択とアウトプットの工夫にあります。まずは分析の目的をはっきりさせ、整理すべき具体的な要素をまとめることで、比較対象や評価基準を設定することが重要です。また、グラフの種類やデータの加工など、第三者が見ても客観的な判断ができるような見せ方を工夫する点にも留意しました。 マネージャーとの調整は? ヘルスケア領域のコンサルティング業務においては、実際に分析に取り掛かる前に、マネージャーとの認識統一が欠かせません。分析する項目の選定や、加工の必要性、さらには比較対象や基準、定義の設定について事前の調整を行うことで、適切な手法を選択できると実感しました。 数字の示唆は? また、定量的なデータ分析は単に数値を示すだけでなく、その数値からどのような示唆を得るかが大切です。データ分析の結果をマネージャーに提出する前に、伝えたいメッセージを明確にすることの重要性を理解し、背景や目的の整理、現状分析、課題抽出、解決策という業務プロセス全体の中で、正しいデータ分析方法とそのアウトプットが不可欠であると再認識しました。

データ・アナリティクス入門

小さな比較が大きな決断へ

分析の目的は何? 分析は、対象の比較を通して最終的な意思決定に役立てるためのプロセスです。まず、分析の目的をはっきりと定めることが大切です。その際、必要な要素の整理を行い、どのような切り口で分析を進めるかを考えます。 比較とグラフはどう? 具体的には、各要素を同じ尺度で比較できるよう配慮しながら、縦棒グラフや横棒グラフの使い分けに注意を払い、差異を視覚的に把握しやすい構成を目指します。数値データだけでなく、感覚的なスコアも、別の切り口を用いることで定量的に表現できる点が重要です。 柔軟な検討は必要? また、データ分析の依頼を受けた際は、まず目的に関する詳細なヒアリングを行い、分析に必要な各要素の分解や整理を丁寧に実施します。目の前のデータに固執することなく、柔軟な視点から検討することが求められます。 結果のまとめは? 最終的な分析結果のまとめにおいては、伝えたいメッセージに最も適したグラフやダッシュボードを選択することが鍵となります。こうした取り組みが、分析時に生じる躓きや失敗を解決するためのディスカッションに繋がっていくでしょう。

データ・アナリティクス入門

データと仮説で納得の選択

正確なデータは? 実務では、正しいデータに基づく比較ができていないため、意思決定で迷うことが多いと実感しています。経験や定性評価のみに頼ると限界があり、説得力にも欠けるため、定量的なデータを用いて自分自身も相手も納得できる意思決定を行いたいと考えています。 データの扱いは? これからは、まだ扱ったことのないさまざまな種類のデータに触れる必要があると感じています。そのため、まずはデータに関する知見を深め、各データの特徴に合った加工方法やグラフの見せ方を学びたいと思います。 仮説の重要性は? また、分析のプロセスでは、目的だけでなく必要な項目やデータに対する仮説の設定が重要だと感じています。仮説を立てる力を養うためにも、多くのデータに目を通し、さまざまな角度からの切り口を見出すためのフレームワークを習得したいです。現在担当している店舗オペレーション改善においては、トライアル検証やローンチ後の結果分析が課題となっており、通常の切り口に加えて新たな視点からの比較を行い、分析結果をプランニングやプレゼンテーションに活かしていきたいと考えています。

データ・アナリティクス入門

平均値の裏に隠れた真実

計算方法で何が変わる? 動画を通じて、平均値と言っても採用する計算方法によって分析結果が大きく異なることを実感しました。これまで数値のばらつきや外れ値についてあまり意識していなかった自分にとって、正確な分析を行うためにはこれらの点をしっかり捉える必要があると感じました。平均、加重平均、中央値の使い分けについては理解していたものの、幾何平均や標準偏差という手法は新たな気づきとなりました。 例外ケースはどう捉える? また、契約顧客に関して解約率やアップセル率を分析する際、まれに契約金額が大きく、どうしようもない理由で解約となる場合や、一時的にアップセルが成立する場合があります。そのような際には、これらのケースを外れ値(ばらつき)として扱うことにより、より現実に即した数値で分析できると感じました。 手法の選び方はどう? 今後、定量的なデータ分析を行う際には今回の学びを活かし、初めは単純平均や加重平均など、さまざまな手法で計算結果を出してみることで、それぞれの数値の違いを実感しながら、より精度の高い分析を心がけていきたいと思います。

アカウンティング入門

数字で見える経営の未来

価値提供で迷った? お客様に提供する価値が何であるか、そしてその実現のためにどこで努力すべきかという、事業経営の原点を改めて学ぶことができました。どの市場で勝負するか(立地)と、どのようなビジネスモデルで展開するか(構え)の両面が重要であると実感しました。具体的な事例を通して、数字の重要性はもちろん、ぶれない経営のためにこだわるべきポイントがあることを学びました。 計画にどう活かす? この学びを今後の事業計画に活用していきたいと考えています。特に、様々な製品やサービスを企画する際には、どの市場をターゲットとし、どのような価値をお客様に提供するかという基本方針に加え、財務体質などを定量的に説明できる状態を目指したいと思います。 分析結果をどう伝える? また、様々な企業や事業の分析を通して、いくつかのシナリオごとにどのような結果が得られるかを整理し、人に説明する際の参考資料として蓄積していくつもりです。現状、直感に頼った判断が多いので、今後は人を動かすために、財務・マーケティングスキルをより一層磨いていきたいと考えています。

データ・アナリティクス入門

売上低下の真因を明らかにする分析術

総復習で得た新たな視点とは? 今までの講義の総復習だったので、各パーツで学んだ内容を一連の流れとして把握できました。仮説、網羅的思考、目的の設定、見せ方、分解など、分析の知識と新たな思考法を学ぶことができました。また、結果をイメージした分析の重要性も体感することができました。 なぜ売上が思わしくないのか? 現在、売上が思わしくないため、きちんと目的を持った分析、原因の追究、仮説・検証の繰り返し、そして網羅的な思考を意識して業務に取り組みたいと考えています。さらに、定性的な言葉と定量的なデータを組み合わせることで、説得力のある提案ができるようにしたいです。 今後の施策にどう活かす? 売上が上がらなかった理由については、いくつかの仮説があります。まずはこれを基準に分析を行い、それに加えて網羅的な仮説も追加して多角的な分析と提案を実施していきます。原因の追究を行い、今後の施策に活かすことが重要です。また、数値がなくても、今回学んだ思考は応用可能な部分があると思うので、売上の改善に役立てていきたいと考えています。

アカウンティング入門

発見!数字から読み解く事業の魅力

お客様は誰ですか? 事業活動とは、まずお客様が誰であるかを明確にし、そのお客様にどのような価値を提供するかを実現するための、一連の活動やリソースの投入、資金調達などの流れを指します。この活動の結果は、財務諸表という形で定量的に示され、そこから事業活動の特徴や状態を把握することができます。 財務三表は何を意味? また、損益計算書、貸借対照表、キャッシュフロー計算書の3つは、いわゆる財務三表と呼ばれ、企業の事業活動の特徴や状態を読み解く上で特に重要な資料となります。 どう振返るべきでしょう? 業務を進める際には、日々行っている事業活動について、どのようにして顧客への価値提供が達成されているのかを振り返ることが大切です。また、来期の事業計画や月次報告を作成する際には、各数字が持つ意味を考え、その数字から読み取れる自社の事業活動の特徴を説明できるようにすることが求められます。さらに、直接財務三表を扱う機会がなくても、経理部門から資料を入手するなどして、現在の経営状況を定期的に確認する習慣が有益です。

クリティカルシンキング入門

客観思考で挑む原因究明

客観視できていますか? 主観的な判断を排除することの重要性を学びました。私たちの思考には必ずしも客観的な視点が備わっているとは限らないため、答えが導かれた後も「なぜその結論に至ったのか」「本当に正しいのか」を問い続けることが大切だと感じました。 他の原因も見えてますか? また、仕事で問題が起きたときに原因を明確にする際、この考え方が役立つと実感しています。すぐに原因と思われる事象に気が付いたとしても、他にどんな原因が存在するのか、なぜその事象が発生したのか、定量的なデータを用いて誰が見ても納得できる説明ができるかを念入りに考える必要があります。 多角的に考えていますか? さらに、問題発生時には、客観的な判断に必要な情報をリストアップし、思考が一面的にならないように努めています。ロジックツリーを活用して原因を深堀りし、上位者や他部署の視点からもチェックを行うよう心掛けています。最後に、取り組んだ結果を振り返ることで、次の課題解決に向けた改善策を見出す重要性を再認識しました。

アカウンティング入門

企業を深く知る!新視点の財務分析

なぜ財務表を学ぶの? ライブ授業では、ある企業の事例を通して、財務諸表を詳しく見ることの重要性を学びました。これにより、損益計算書や貸借対照表の理解を深めることができ、この1か月以上の学びを振り返り、今後の学習方法についても考えることができました。 どうやって企業理解? まず、顧客企業の財務分析においては、企業のホームページや採用情報、関連出版物、さらにはヒアリングを通じてそのビジネスモデルをしっかり理解していきたいと思います。これによって、単なるテンプレートに基づく定量分析ではなく、具体的に何を分析したかが明確になるような分析が可能になると考えています。 仮説検証の流れは? 次回定量分析を行う際には、まずデータを収集するのではなく、企業のホームページや採用ページ、出版物をもとに、企業の人員構造や財務状況について仮説を立ててみます。その後、この仮説を検証するために定量分析を実施し、特に仮説と異なる結果が出た場合には、顧客への報告時に質問や議論を重ね、理解を深めていく予定です。

データ・アナリティクス入門

数字で読み解く成長の軌跡

定量分析の鍵は? サンクコスト、定量分析、MECE、ロジックツリーという手法について学びました。定量分析では、データのどこに注目し、どこを比較するかが重要であることが分かりました。特に、①インパクト、②ギャップ、③トレンド、④バラつき、⑤パターンの各視点からデータの意味合いを読み取ることに注力しました。 MECEの意味は? また、MECEに関しては「もれなく、ダブリなく」に分けるだけでなく、意味のある切り分け方が重要であることを理解しました。この考え方を基に、現状と理想のギャップを明確にし、具体的な行動につながる方向性をメンバーに示すことが求められると感じました。 課題解決の道は? さらに、現状の課題として、分析結果の共有時にメンバー間で理解のずれが生じたり、行動に直結しない点が挙げられます。なぜこのような分析が必要なのか、そこから得るべきものは何か、そして課題の解決につながる具体的な実施方法について、今後さらに明確にしていく必要があると感じました。

データ・アナリティクス入門

A/Bテストで成果を見える化!

真因はどこにある? プロセスを分解し、問題がどこにあるのか、さらにその真因を掘り下げるアプローチは非常に重要です。このような手法により、具体的な対策が見えてきます。特に、A/Bテストを用いた評価方法は、複数の施策を公平に比較するために有効です。ランダム性を持たせつつ、できるだけ条件を同じにして施策をリリースし、実際の結果を基に評価することが求められます。 課題はどう捉える? 実際の業務では、A/Bテストを行う機会は少ないかもしれませんが、顧客の課題をプロセスに分解し、その真因を探りながら仮説を立てることは、多くの場面で有効です。このような手法で、顧客の表層的な課題だけでなく、プロセスの詳細まで深く掘り下げることが大切です。 データは信頼できる? そのためのヒアリングやディスカバーを繰り返すことで、有意義なデータを収集し、場合によっては実地での業務サーベイを行うことも検討します。これにより、定量的なメリットの根拠を構築することが可能になります。
AIコーチング導線バナー

「定量 × 結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right