クリティカルシンキング入門

視点で魅せるグラフ表現の魔法

数字表の何が難しい? 数字だけの表を見ると、どの部分に着目すべきかが不明瞭になり、相手に意図を十分伝えられない場合があると学びました。そこで、相手の視点に立ち、グラフや切り口を工夫することで、伝えたいポイントをより具体的に示せると感じています。 海外支店はどう伝える? また、海外支店の財務分析や売上、マーケティング分析の業務を通じ、現地の営業担当者とのコミュニケーションを行う中で、問題点や解決策についての説明が求められる状況が多々あります。その際、ただ「なぜなら~」と理由を述べるだけでなく、適切な切り口で工夫された資料を用いると、より分かりやすく伝えることができると実感しています。 実務での切り口は? さらに、切り口に関しては、他にどのような方法があるのか、また実務の現場ではどのように活用されているのか、具体例とともに知りたいと考えています。

戦略思考入門

見失いがちな大切な本質

本当に大切なのは? 全体の振り返りで、自分が一番印象に残っているのは「案外忘れているものがある」という事実に気づかされたことです。日常の業務に追われると、本当に重要なことが見えなくなりがちであると実感しました。 捨てる選択は正解? また、多くの方がDay4のテーマで「捨てる」という答えを選んでいたことも印象に残りました。私自身も、普段のルーティンに没頭してしまい、無駄な作業がないか振り返ってみる必要を感じさせられました。 基本に戻る理由は? さらに、フレームワークの基本を押さえる重要性を改めて認識しました。状況が複雑になるほど、基本に立ち返ることが大切だと感じます。特に3C、PEST、SWOTなどの手法は、実施するタイミングによって結果が異なるため、これらを基にシナリオプランニングを行うことで、今後の方向性が明確になってくると考えています。

クリティカルシンキング入門

業務に生かす学びの再発見

業務にどう活かす? 学んだ内容を自身の業務にどう生かすか、真剣に考えるための良い機会となりました。今回の復習を通じて、常に自分自身に問いを投げかけ、この方法や考え方が正しいのかを自問自答する癖を身につけたいと考えています。 提案はどう見直す? また、提案にあたっては、提供価値が適切に整理され、相手の立場からもベストな提案や回答になっているかを意識するよう努めたいと思います。知識はあるものの、業務に落とし込みきれていない同僚も多い中で、私自身が第三者の視点から客観的な指摘を行う役割を担うことも大切だと感じました。 習得はなぜ重要? 総復習の機会を通じ、日常的に学んだことをしっかりと身につけることが重要であると再認識しました。自分なりのフレームワークを確立し、それを業務に定着させる習慣をつけることで、さらなる成長を目指していきたいと思います。

データ・アナリティクス入門

小さな検証がもたらす大発見

A/Bテストはどう活かす? A/Bテストの手法を学ぶ中で、基準を揃えた上で複数のパターンを試し、比較検証することの重要性を実感しました。また、A/Bテストに限らず、比較を行う際には条件を同一にすることが必要であると感じています。 仮説検証はどう進める? 仮説検証については、小さなサイクルを繰り返すことが効果的だと考えています。月次実績を追いながら、仮説検証を実施し、特に割合の比較を日々の業務に取り入れることで、より正確な分析が可能になると認識しています。 UI/UXはどう評価する? さらに、アプリケーション開発に携わる立場から、UI/UXの検討においてもA/Bテストの手法を積極的に活用していきたいと思います。現業務で実際に数値をもとに比較を行っている経験を踏まえ、今後も引き続きこのアプローチを継続し、業務改善に生かしていく所存です。

クリティカルシンキング入門

伝えたい思いを整理する力を育む

伝え方はどう? 私は、主語と述語を正しく使えず、自分の考えを十分に相手に伝えられていないことに気づきました。説明の際には、思いついたことを整理せずに話していたため、相手には何を言っているのかわからない状態が多かったのだと思います。 誤解はなぜ起こる? 業務では、分析した内容や考えたことを相手に伝える役割を担ってきましたが、整理されていないまま情報を伝えていたため、「それはどういう意味?」と聞き返されることがしばしばありました。したがって、これからは伝えたい内容を整理し、順序立てて伝えることを意識していきます。 報告の極意は? 報告や伝達を行う際には、まず伝える内容を書き出し、整理することが重要です。伝えたい内容のゴールが何か、そのゴールにどのような要素が必要かをきちんと整理し、相手にとってわかりやすく伝える方法を心掛けていきます。

データ・アナリティクス入門

見えない価値を探る学びの場

目に見えぬリスクを感じる? 既に目に見える情報だけでなく、目に見えない要素にも着目する大切さを学びました。たとえば、帰還していない飛行機の状況を考えることで、現状からだけではなく、潜在的なリスクや可能性についても想像する力が養われると感じました。また、出版される経営に関する本は、その裏付けとして成功しているという実績があることに共感を覚えました。 数字に秘めた戦略は? 一方、私の業務は既存のデータをまとめ、数字や報告資料に反映させるという作業が中心です。そのため、現時点ではこの学びが直接的に業務に活かせるとは感じられていません。しかし、今後、毎月提出する経営会議用の資料に予測や分析を加えることで、より深い洞察が業務の判断材料になり得ると考えています。特に、条件を比較しながら推測を行うことで、より実践的な分析が可能になると期待しています。

データ・アナリティクス入門

比較が切り拓く説得力

何を比較する? 「分析の本質は比較である」という考え方を基に、分析を行う際には何を比較の対象とするのかを明確にすることが大切だと感じました。また、比較対象が適切かどうか、つまり条件ができるだけ揃っているかを検討することで、説明する相手にも説得力を持って納得してもらえると考えました。 数値変動の理由は? 商品の活用数値に大幅な変動があった際は、原因分析が必要です。その際、単に昨年度同時期の数値を比較するだけでなく、同期間の環境―追い風か向かい風か―を把握することで、より説得力のある分析が可能になると思います。これらの情報がすぐに確認できるよう、ファクト元の整備も重要だと感じました。 業務経験をどう活かす? 特に疑問点はありませんでした。今後は、皆さんの業務経験を参考にしながら、さらに多角的な観点で分析を深めていければと思います。

アカウンティング入門

流動 vs 固定、財務分析の奥深さ

資産と負債はどう関係? 流動資産が流動負債を上回る状態が良いことを理解しました。しかし、固定資産と純資産の関係についてはまだ十分に理解できていません。新しい業界と伝統的な業界では、貸借対照表における固定資産の比重が異なることが分かりました。 返済能力はどう評価? 流動資産と流動負債のバランスを見る際に、短期返済が必要なものを即座に返済できるかを確認したいと思っています。業界特有の特徴を理解し、共通点と相違点を把握した上で、定量的および定性的に分析を進めていきたいです。 支援前に何を確認? 業務での使用イメージはまだあまり湧きませんが、損益計算書と同様に貸借対照表も詳細に確認し、顧客企業への支援を始める前に定量分析や定性分析をしっかりと行うことが重要です。また、数年分の貸借対照表を見て、その推移を確認することも必要です。

アカウンティング入門

数字だけじゃなく実像を読み解く

財務の見方はどう? 今回の学習で、業種や企業の特性に応じた財務諸表の読み方が変わることを実感しました。単に数字を見るのではなく、それぞれの企業の特徴を踏まえて仮説を立てながら財務諸表に向き合うことで、より深い理解が得られると感じました。 実践で力をつける? 具体的には、CVCの業務において、投資先やアライアンス先企業の財務諸表を詳細に分析し、企業の強みや弱みを把握する手法や、日経新聞などで注目している企業の情報をもとに投資判断や戦略の立案に活かす方法を学びました。また、実際に特定の企業の財務諸表を基に予想を立て、実態との比較検証を行うサイクルを実践することの重要性を再確認しました。さらに、学んだ内容を上司や同僚に報告してフィードバックを受けることで、実践的な知識をさらに深め、業務に生かしていこうという意欲が高まりました。

クリティカルシンキング入門

新しいデータ分析手法で業務効率化に成功!

データ加工の基本技術とは? データの加工の仕方、分け方の工夫、分解の注意点の3つを学びました。特に注意が必要だと感じたのは、分け方の工夫と分解の注意点です。手を動かしてそれらしいデータが見えた際にすぐに結論を出してしまうと、誤った判断に繋がる可能性があると感じました。 商談データ分析の新アプローチ? 私の業務では、特に商談や受注に関するデータの分析を担当しています。これまでとは異なる切り口でデータを集計し、同時に新しい仮説をもとにデータを分解してみることは、すぐに実践できそうです。 仮説を活用したデータの再確認 商談や受注データの吸い出しを行う際には、常に新しい仮説を持って取り組むことが重要です。そして、一見それらしいデータが見えても、一段階深く集計の漏れや新しい切り口、データの正確性を再確認することが必要です。

クリティカルシンキング入門

客観視で育む最適判断力

直感と客観視とは? 改めて、物事を客観的に捉える重要性を実感しました。自分の感覚に頼るだけでは思考の癖に陥りやすく、解くべき課題の本質を見誤るリスクがあると感じました。そのため、直感や経験だけではなく、冷静な客観視を意識することが重要です。 限られた情報でどう考える? また、正解が用意されていない問いに対して、限られた情報から最適解を導き出す思考力と、それに基づく意思決定力は、AIが普及した現代において非常に求められるスキルだと考えています。 意思決定の秘訣は何か? 普段の業務では、自らイシューを設定し、限られた情報の中で果断に意思決定を行う経験を積んでいきたいと思います。その際、どのような理由で判断を下したのかを、他者に明確に伝えられるよう、主張と根拠をセットで整理しておくことの必要性を改めて認識しました。

データ・アナリティクス入門

データ分析で仮説と検証を学ぶ

仮説の立て方を見直すには? 今まで、データ分析において仮説から検証のプロセスをなんとなくで行っていたが、複数の仮説を立てることや、網羅性を持たせることはあまり意識していなかった。また、立てた仮説の検証だけでなく、反対の事象を裏付けるデータも収集することで、より説得力のある仮説検証ができる点も意識すべきだと感じた。 データ分析を業務にどう活かす? 今後、業務でデータ分析を行う際には、仮説立てから検証までのプロセスを意識的に組み込むようにしたい。現在取り組んでいる運転資本の改善についても、問題がどこにあるのか(Where)を仮説立てし、既存のデータから分析を行うようにする。そして、Whereが特定できた後には、なぜその問題が生じたのか(Why)の仮説を立て、その仮説を立証するための分析方法を検討するつもりだ。

「業務 × 行う」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right