戦略思考入門

選択と集中が生む、企業変革の鍵

慣例を捨てる意識を再確認 事業や業務において「捨てる」ことは、「慣例」や「定型」に拘らないことだと意識していましたが、今回の学習を通じて無意識のうちに「慣例」や「定型」に捉われていたと気づかされました。個人で「捨てる」ことは容易ですが、組織として「捨てる」ことは意識的に取り組む必要があり、論理的なストーリーを立てて進める必要があると再認識しました。「ムダじゃない?」や「意味はない」では他の社員は納得してくれず、腹に落ちないことを肝に銘じておきたいと思います。 プロジェクトへの想いと捨てる決断 IT業界では参画したプロジェクトに長期間携わることが多く、顧客やプロジェクトに対する想いが強くなりがちです。事業領域を選択と集中(捨てる)する際には、参画メンバーの心情も考慮する必要がありますが、メンバーの意識や想いを重視することはできません。トレードオフを念頭に置きながら、検討・計画・実行していきたいと思います。また、客観的な判断を行うために数値をベースにして取り組んでいく必要があります。 トレードオフの検討にどう向き合う? トレードオフを検討するにあたり、売上高や利益、一人当たりの売上高や利益、投下コストなどの生産性指標を把握し、社員にも示せるように準備を進めます。数値をベースに社員の意見も取り入れた上で判断し、上層部への提案を行っていくつもりです。現在、中期計画や短期事業計画の策定に携わっており、事業領域の検討にこれらを取り入れて進めていきます。

データ・アナリティクス入門

問題解決の視点を広げる大切さ

プロセスの問題をどう特定する? プロセスの問題を明確にするためには、各プロセスを分解してそれぞれの率などを分析し、どこに問題があるのかを確認することが有効です。また、仮説を考える際には内部要因と外部要因の両方を考慮することで、視野を広げることができます。 A/Bテストの成功法は? A/Bテストを行う際は、一つずつ要素を変えて精査することが重要です。時期的な要因に左右されないためにも、同じ期間に同様のターゲットに対してランダムに行うのが良いでしょう。複数の要素をテストしたい場合は、別の手法を検討する必要があります。 WEB広告でのA/Bテスト活用法 WEB広告においてもA/Bテストを活用し、広告の精度を高める努力を続けますが、時期や施策ごとに単に更新するだけではなく、施策展開から販売までのプロセスを分解し、どこに業務プロセスの問題があるかを分析することが重要です。 効果的な問題解決の取り組み方 解決策を決め打ちするのではなく、「What」「Where」「Why」「How」の各プロセスを意識的に取り組むことが求められます。問題解決のプロセスを意識的に取り組み、定着させることが必要です。 チームで知識を共有するには? また、WEEK5の内容をチーム内に共有し、良い切り口を持てるように常にアンテナを張り、これと思ったことを書き留めることも大切です。年末に向けて打ち出す販促施策においても、A/Bテストを試みたいと思います。

クリティカルシンキング入門

データ分析の新視点で営業資料をブラッシュアップ

異なる視点でデータを分析するには? データを分解して考える際、When, Who, Whatの切り口を意識し、複数の視点で分析することがデータ分析に繋がることを学びました。様々な切り口から傾向を掴み、本当にその見方で合っているかという疑問を持ちながら丁寧に読み解くことが大切です。今後は、業務でデータ分析を行う際に発見した1つの傾向に満足せず、疑問を持ち、様々な切り口を意識して業務を見直していきます。 効率的な分析手法をどう見つける? また、データの切り口は最初から細かくせず、大→小の順で考えると分析しやすいことも分かりました。 どのように営業会議資料を改善する? 最近の営業会議資料の作成業務では、ありきたりな角度でしか集計・分析できていなかったことに気づいたので、今後は様々な角度から分析を行い、グラフを作成するつもりです。SNSのフォロワー数分析でも、大きな範囲でしか数字を分けていなかったため、細かく区切って分析し直そうと思います。 効果的なグラフ作成のポイントは? 会議資料の作成においては、データ抽出の対象範囲を見直し、どのような角度で分析が必要かを持論として上司に相談しながら進めます。グラフは見せたい内容によって変わるので、相手にとって分かりやすい分析の内容を心掛けます。 SNS分析を向上させる方法とは? SNSの分析に関しても、1つの大きな傾向に縛られず、切り口を変えて再度分析し直すことを念頭に置いています。

戦略思考入門

リソース配分の悩みと振り返りの重要性

業務効率化はどう進める? 業務の効率化を考える際、メリットの少ない工程を排除したり、手作業を自動化することは比較的容易である。実際にこれまで幾度となく実践してきた経験がある。しかし、限られたリソースで重要度が拮抗している2つの戦略や業務のうち、どちらかを選ぶ場面では、それほど簡単とは言えない。 選択サイクルの重要性とは? それぞれの戦略や業務にかかるコストと得られる効果(売上や時間短縮)をできる限り定量化して判断するのが一般的だ。しかし、選ばなかった方が後に良い選択だったのではないかという懸念は拭えない。そのため、「選択」は一度きりの行為ではなく、実行後に関係者で振り返り、次に繋げていくサイクルが重要であると感じた。 今後の人事戦略の考え方 次期中期経営計画における人事戦略を立案する際、以下の3つのポイントを念頭に置いて、チームでこれまでの活動を振り返り、今後の戦略やアクションの取捨選択を行いたい。 1. **捨てる方が応募者のメリットになること** - 応募者の立場で再考し、他社の手法なども参考にする。 2. **惰性に流されないこと** - 従来のやり方や慣例を疑い、無駄の排除や効率化、別のアプローチの検討を行う。 3. **餅は餅屋に任せること** - 分業化を検討し、社内での分業化や外部委託、もしくは専門家の意見を取り入れる。 これらの観点を基に、効果的な戦略の取捨選択を進めていきたい。

アカウンティング入門

バランスシートで未来を読む

資金活用の意味は? 今週は、資金の使い道や事業への投資の適切さについて学びました。特に、ある視点から企業のバランスシート(B/S)を通して経営者の意図を読み解き、資産の有効活用や安全性に関する考察を深めることができました。固定資産と純資産のバランスが企業の安全性にどのように影響するかを理解し、B/Sに経営者の将来ビジョンが反映されている点を学ぶことで、投資判断の基礎知識を一層強固なものにできたと感じています。 比較検討の要点は? また、業務においては、投資先企業と自社のバランスシートを比較検討する中で、良い点と改善点を洗い出すことの重要性を実感しました。これにより、投資先企業の財務状況を総合的に把握し、投資判断の精度を高めることが可能になると考えています。 成長戦略はどう? さらに、投資先企業の成長を支援するための具体的な戦略の立案や、自社の投資戦略改善へのフィードバックの獲得にも取り組むことができそうです。最終的には、投資先企業の成長が自社の利益にもつながる相乗効果を目指していくというビジョンが明確になりました。 継続的な検証は? 決算書やファイナンス資料を活用し、投資先企業と自社のバランスシートを継続的に分析する中で、良い点や改善点を具体的に把握することができました。これらの情報を基に、定期的なモニタリングと必要に応じた戦略の修正を行うことで、投資判断の質をさらに向上させ、企業全体の成長に寄与できると感じました。

データ・アナリティクス入門

データ分析で競争力を引き出す方法

データ分析の本質とは? データ分析における本質は「比較」にあると言われています。この過程では、分析したい要素以外の条件を揃えることが重要です。適切な比較対象を選定し、分析の目的に沿った比較を行うことが求められます。 分析の目的設定はなぜ重要? まず、分析を始める際には、目的を明確にすることが必要です。そして、仮説を立て、それに基づいて優先順位を設定します。データの収集、加工、発見を経て、最終的には効果的な意思決定につなげていくのです。 成果を再現するには? 具体的な例としては、Aによる効果を分析する場面があります。この場合、Aが「ある場合」と「ない場合」を比較することが重要であり、分析はまさにこの比較によって成り立っています。特に営業職においては、成果が出ている活動の再現性を高めることが、組織の実績向上へとつながる可能性を秘めています。実績としては、販売実績やシェアが分かりやすいですが、行動としても活動日数や活動時間、活動製品内訳など、さまざまなデータが存在します。 比較を成功させるためには? 競合他社や都道府県別、営業社員別での比較を行う際には、まず分析の目的を明確にすることが肝要です。マネジメント業務では、売れる仕組みや自社製品の選定理由などを分析し、再現性の高いアクションプランの策定を推進しています。比較対象を選ぶ際には、目的に沿っているか、条件が均一かを確認し、分析を始める前によく見直すことが重要です。

データ・アナリティクス入門

ギャップに気づく未来への一歩

どのようにギャップ認識? 問題解決のプロセスについて学んだことで、現状と理想(あるべき姿、ありたい姿)のギャップを明確に把握する重要性を実感しました。現状が理想に達していない場合はまず「あるべき姿」を定め、さらに改善を目指す際には「ありたい姿」を設定するという考え方は、今後の業務に大いに役立つと感じています。 どう分類を柔軟に? また、ギャップを特定する際には、MECE(漏れなく、ダブりなく)を意識することが推奨される一方で、状況に応じて「その他」の分類も柔軟に取り入れることが大切だと学びました。単なる分類に終始するのではなく、実際に意味のある分別ができるよう努める必要があると考えます。 何故課題整理が必要? この学びは、データ分析の課題設定において非常に有効です。分析に取り組む前に、まず現状と理想のギャップを整理することで、的確な課題設定と見落としの防止が図れます。さらに、他の人が設定した課題についても、自分なりの視点で再考し、改善点を見つける習慣を身につけることが重要だと感じました。 どのような目標管理? 実際の業務だけでなく、目標設定やソフトウェア導入の検討プロセスにも応用できるこのスキルは、定期的な進捗確認や必要な修正を行うことで、最適な状態を維持するのに役立ちます。自分で設定する課題や目標だけでなく、チーム全体で意見を共有し、ディスカッションすることで、より本質的な問題解決へとつながると期待しています。

クリティカルシンキング入門

データ分析で解決策を見つける喜び

Week1からの学びを総括 今週は振り返りの週ということで、改めてWeek1からの学びを総括しました。 まず、「データを理解し、深く分解すること」や、「相手に正確に伝えるアウトプットの重要性」、「イシューを特定し、それに対する適切な打ち手を考えること」を学びました。 トラブル解決で何を思い出す? 私の業務は製薬会社の生産部門におけるトラブル解決を担当しています。そこで思い出すのは、以下の内容です。 まず、年間目標や業務ごとの課題解決についてです。これには、生産部門でのトラブルの原因究明とその解決策の立案が含まれます。目標の達成に向けてマイルストーンを設定し、各段階でイシューを特定し、対応策を考えることが重要です。 データ分析はどう生かす? 次に、与えられるデータに対する考察についてです。多角的にデータを分析し、イシューを浮き彫りにする能力が求められます。この分析の過程で得られた洞察が、課題解決の手がかりとなります。 メンバー育成の視点で何が重要? 最後に、部門のメンバーのキャリア開発と育成です。これも同様に、個々の成長を見据えたマイルストーン設定とイシューの特定が重要であり、その都度適切な指導やサポートを行うことが求められます。 今回の学びが示す未来 今回の学びを通じて、日々の業務においても適用できるアプローチが増え、より効果的なトラブル解決とチーム育成の実現が期待できると感じています。

データ・アナリティクス入門

多角的な視点で学び直すビジネス分析技術

講座で再確認した3つのポイント 今回の講座を通じて、以下の3点について再確認することができました。 まず、多角的に分析・比較することの大切さです。次に、自分の目線ではなく、聞き手の目線や聞き手の属する組織の目線に合わせることの重要性です。そして、聞き手が普段から利用している分析の観点を押さえておくことで、話が通じやすくなることも理解しました。 保有案件と市場調査の具体的学び 具体的な学びとしては、以下の内容が挙げられます。 まず、保有案件の分析です。案件のコンディション別に受注確率を算出し、保有案件量を確度別に分類して先週との差異を出しました。また、市場調査においては、マーケット分析を自動化する手法を学びました。 売上分析と満足度調査の手法 次に、売上分析に関しては、特定マーケットに対する自社の製品・サービス別の売上を整理する方法と、その自動化について学びました。お客様満足度調査では、データを用いて定量的に経年比較を行う生産性の高い分析方法を習得しました。 実務での応用と課題解決の姿勢 さらに、新しく作成した分析結果の表やグラフをわかりやすくする方法についても学びました。 これらの考え方や手法を実務で試みました。特に、頻度の高い業務である保有案件量の分析で実践し、課題を発見。その課題を講座で確認し、解決を図る姿勢を持ちました。講座内で解決が難しい場合には、職場の周囲から教わり、解決する方針としました。

戦略思考入門

業務を捨てて本質に集中する方法

不要な業務をどう選定する? 本質的な業務に注力するためには、不要な業務を選定することが大切です。これには、「対応しない」「あとで対応する」「外部移管をする」といった選択肢があります。業務を捨てる判断を行う際の重要な判断軸として、「利益が出るか」「現場でうまく運用できるか」「会社の方針に合っているか」「法令やルールを遵守しているか」「公平性は担保されているか」などが考えられます。業務の目的や状況によってこれらの判断軸は変化するため、柔軟に対応することが求められます。 優先順位の低い業務は? 来期の部署の年間計画を策定する中で、財務の観点や会社の方針に基づいて優先順位の低い取り組みについては捨てるよう、上司に提案していく方針です。また、取引先に提案を依頼する際には、私たちの要望の中での優先順位を明確に伝えます。私が提案を行う時も、相手が本質的に何を求めているのかを理解するよう努めます。業務の中では、過剰な報告・連絡・相談の廃止や、会議用資料の作り込みすぎを避けるといった細かな改善も進めます。 判断軸の統一はなぜ重要? 捨てる要素に関する判断軸は、チーム内での認識を統一しておくことで意思決定がスムーズになると感じています。そのためには、上司と相談しながら捨てる業務の意識や判断軸の統一を図っていきたいと思います。上司に納得してもらうためには、根拠が必要となるので、数値化可能な部分はしっかり準備して提案するよう努めます。

クリティカルシンキング入門

イシュー特定で業務効率が劇的に向上

基礎知識の学びと課題発見は? ここまでに基礎知識やデータの読み解き、思考方法を学びました。課題としてイシューを特定するためには、問いから始めることが重要だと認識しましたが、まだ経験から来る判断をしているとも感じました。これを改善するために、常に意識し振り返りを行うことで、習慣化を目指します。 目的とゴールの意識が業務を変える? まず、イシューを特定し、目的とゴールを意識することが重要です。具体的には以下の点で活用範囲があります。 1. **業務の設計** - 目的とゴール、そしてあるべき姿を常に意識します。問いから始めることで、すぐに要点だけに意識を向けるのではなく、全体を俯瞰して考えることが大切です。 2. **人的なミス** - 仕組みや設計に問題がないのか、そもそも対策が必要かなど、広い視野で本質的な原因を考えるようにします。 3. **会議** - 何を決定する会議かを明確にし、イシューが何であるか、本質と内容がずれていないかを意識し続けます。 4. **資料作成** - イシューが何か、無駄な項目がないかを意識し、前提→結論→具体例がぶれていないかを確認しながら作成します。相手にとってのイシューや疑問をくみ取れる内容にすることが求められます。 問いから始めると否定的に捉えられる可能性もありますので、伝え方や日々の信頼残高を貯める意識を持ち続けることが重要です。

データ・アナリティクス入門

データの見方で変わる分析の魅力

代表値と平均値の意味は? 「代表値」の取り方によって、仮説そのものが変わるため、スタート時点ではデータが正しく取得されているか確認が必要です。また、「平均値」は何を表すために使用するのかを確認する必要があり、すべての現象に平均値が適切であるわけではありません。代表値が正しく算出されているかどうかは、確認できれば行うべきです。例えば、前月や前年同月と比較して、結果が適正範囲であるかどうかを確認することが有効です。 標準偏差の目的は何? 「標準偏差」については、業務で適用するケースがほとんどなく、代表値同士を比較して分析する機会が少なかったと感じています。しかし、標準偏差を確認することで、実際のばらつき具合を把握できる場合があります。 データ推移をどう捉える? また、数字だけの表が緑・赤・黄に色分けされているなど、見た目でわかりやすくしていますが、これが単月でしか使用されていない現状があります。数ヶ月ごとのデータ推移を比較し、グラフ化することで、情報をより深く読み取ることが可能になります。 新たな可視化方法は? 可視化においては、円グラフやヒストグラムを多用していますが、それ以外の手法を取り入れることが少ないと気付きました。他の表現方法を取り入れ、第三者に訴える視覚的なグラフを作ることを試みたいと思います。むしろ、意図的に不適切なグラフも作成してみて、それがどのように不適切に見えるかを学ぶことも重要です。

「業務 × 行う」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right