データ・アナリティクス入門

平均だけじゃわからない、データ物語

代表値の選定はどう? データ分析の学びで、まず印象に残ったのは代表値を考える際に、単純平均だけではなくデータのバラつきを十分に検討する必要がある点です。普段便利に使われる単純平均ですが、その値が適切な代表値になっているかは、データの分散や偏りを合わせて考えなければならないことに気づきました。具体的には、データの性質に応じた代表値として、加重平均や幾何平均、極端な値の影響を抑えた中央値など、さまざまな手法を学びました。 標準偏差はどう捉える? また、バラつきを評価するために、標準偏差(SD)や2SDの考え方を改めて認識することができました。統計的な手法を用いることで、人が感じがちな「恣意的な操作があるのでは」という疑念に対しても客観的な根拠を示すことができる点が非常に興味深く感じられました。2SDの範囲が極端な値を排除する役割を果たすという考え方には納得できるものでした。 評価の分散はどう見る? 業務では主に人事データや研修後のアンケート結果を扱う中で、10段階評価の平均値のみならず、標準偏差や中央値を併せて分析する重要性を再認識しました。例えば、講評の平均値がある数値であっても、評価が全体的に均一なのか、それとも高評価と低評価に二極化しているのかは、ばらつきの分析なしには判断できません。標準偏差が大きい場合は評価が分散し、逆に小さいと評価が平均近くに集中していることが明確になるため、データの分布や偏りを把握する上で非常に有用です。 集計手法はどう進める? この手法を実践するために、まずは研修のアンケート結果をExcelに集計し、標準偏差(STDEV.PまたはSTDEV.S)や中央値(MEDIAN関数)を計算します。次に、標準偏差が大きい場合にはヒストグラムを用いて評価の分布を視覚的に確認し、外れ値が全体に与える影響についても検討します。こうした分析を定期的に行うことで、研修の質や受講者の満足度について、従来の単なる平均値以上の具体的な洞察が得られると考えています。

クリティカルシンキング入門

ナノ単科で見つけた未来の自分

直感で伝わる資料は? 相手に伝わる資料とは、読むために内容を理解するのではなく、見ただけでその意図が直感的に伝わるものです。具体的には、タイトルを明確にし、グラフや図を効果的に用いることで、情報が一目で把握できるよう工夫することが大切です。また、フォント選びなど、視覚的な要素にも注意を払う必要があります。資料は単に読ませるものではなく、伝えるための道具であるという意識を持つことが求められます。 メール作成の要点は? 【メールの場合】 メール作成では、文章を極力短くまとめ、伝えたいポイントごとにタイトルを設けて整理します。ポイントごとに箇条書きなどを用いることで、相手に何をしてほしいのかが明確になるよう心がけます。 資料作成のコツは? 【資料の場合】 資料作成では、統一感のあるフォントや色を使用し、文章だけに頼らず表やグラフを取り入れて視覚的に情報を分かりやすく伝える工夫が必要です。特に、伝えたい内容や要点を強調できるよう、デザイン面にも十分に配慮します。 受け手視点の確認は? 【共通のポイント】 常に受け手の立場に立って、目で見たときに情報がすぐに理解できるかを確認します。使っている用語が相手と共通しているか、また文章が複数の解釈を生まないよう注意することが重要です。 具体例で学ぶには? 例えば、問い合わせメールへの回答では、相手が使う用語を取り入れ、相手が知らない前提で説明すること、またポイントごとに整理して項目や箇条書きを活用することで、文面全体が読みやすくなります。上長へのチーム状況報告資料では、必要な数値をグラフで示し、見やすいフォーマットを用いることで、報告を受ける側が容易にポイントを把握できるよう工夫します。ツール導入時の資料では、活用レベルの異なる利用者に対応できる汎用マニュアルを作成するため、文体、フォント、ページ構成などのルールを統一し、図表やキャプチャ、番号などを効果的に取り入れる工夫が求められます。

戦略思考入門

目的を見失わず視野を広げる戦略

目的はどう定める? 今回の学びを通じて、目的の重要性と視野を広げることの大切さを改めて認識しました。目的を明確にすることは、戦略的思考の基盤であると強く感じます。日常の業務では「何をやるか」に意識が向きがちで、「何のために行うのか」が見失われがちです。このため、チーム内で建設的な議論ができないこともあります。まずは目的を明確にし、常にその目的を意識することを継続的に実践していこうと考えています。 視野はどう広げる? 次に、視野を広げることの重要性です。自分の業務に専念するあまり、自社や自部門の課題に意識が集中してしまうことがあります。そこで、フレームワークを活用して視野を広げることを心掛けたいと思います。この視点は、チームの長期計画を考える際のゴール設定にも役立ちます。 方向性はどう見極める? これまで、経営からのメッセージを咀嚼し、アクションプランを設定していましたが、これからは3C分析の注意点を活かし、「市場と顧客」「業界と競合」を分けて考えます。顧客の特定自社とのギャップから、どのようなKSFを設定するかを考えることで、自分たちの目指す方向を明確にします。目標設定の際は進捗が測れるように、定量的な指標を用いることにします。また、これらの方法論やゴール設定は、自分ひとりではなく、チームメンバーと一緒に考え、思い込みをなくして最短距離で目標に到達できるように進めていきます。 具体策はどう実現する? ゴールを具体的に設定するために以下を実践します。まず、顧客とサービス領域を明確にすることです。顧客は単に社員ではなく、どのような社員なのかをペルソナを使って明確化します。そして、その顧客のニーズや課題を浮き彫りにし、提供するサービスを具体的にしておくことが重要です。また、そのサービス提供の究極の姿を明確にします。次に、3C分析を行い、KSFを設定します。そして設定したKSFに基づき、あるべき姿を数値で表現するように心掛けます。

マーケティング入門

魅せる工夫で価値再発見

マーケティングの基礎はどう? 今回の学習を通して、「何を売るか」「誰に売るか」「どう魅せるか」というマーケティングの基本要素を体系的に理解しました。単なる商品の提供ではなく、顧客の潜在ニーズを引き出し、価値ある体験を提供することが成功のカギであると再確認できました。 戦略の絞り込みは? また、ターゲットの絞り込みや差別化戦略の重要性、そしてペインポイントの解消による新たな価値創造の視点を得ることができました。実際の事例からは、体験価値を重視したアプローチが顧客の共感や支持を得る強力な手法であると学びました。 社員視点の改善は? さらに、今回の学びはバックオフィス業務にも応用できると感じました。社内業務の効率化や社員満足度向上を図る際、単にサポート業務として扱うのではなく、「顧客視点=社員視点」という観点から、社員がどのように感じ、どのように利便性が向上するかを意識する体験価値を考慮することが大切です。 業務工夫はどうする? 例えば、社内の申請フローを利用する人を意識してわかりやすく簡略化したり、社内イベントを体験価値として演出するなど、日常業務をより魅力的なものに変える工夫が考えられます。 業務効率を数値化? また、業務効率を数値化し、ペインポイントを明確にするためには、アンケートやヒアリングを通じて潜在ニーズを見極めることが有効です。現状の業務プロセスに対し、「誰のために、何を改善するか」という視点で再設計を行い、体験価値を高める工夫をすることの重要性を実感しました。 情報発信はどう魅せる? 情報発信においても、社内の情報共有や業務通知などは「どう魅せるか」を意識し、相手の立場に立った親しみやすいデザインと言葉選びを心がける必要があると感じました。そして、取り組み後には定期的なフィードバックを実施し、必要に応じた軌道修正を行うことで、PDCAサイクルを回し続け、継続的な改善を図ることができると学びました。

データ・アナリティクス入門

限界突破!数字が紡ぐ経営判断

仮説検証はどう進める? Gミュージックスクールの採用問題を通して、「仮説立案→データ検証→解決策選択」のプロセスを実際に考える機会となりました。特に、機会コストの概念を用いて「何を諦めるか」を定量的に評価する重要性に気付かされ、データ分析によって感覚的な判断を論理的な根拠に基づく戦略へと変換する価値を実感しました。また、限界に近づいていたある従業員の工数という制約条件下で最適解を導く過程は、現実のビジネス課題の複雑さを改めて認識させ、完璧ではない解決策を採用する経営判断の難しさも感じさせました。 受注と労働はどう連携? 一方、労働集約型の企業においては、顧客獲得と労働力確保が相互に関連していると実感しています。今回学んだデータ分析手法を活用し、営業データ(受注量、案件規模、事業部別実績)と人材データ(残業時間、採用状況、離職率)の相関分析に取り組む予定です。具体的には、受注増加期における人材不足と残業の関係を定量化し、適切な採用タイミングと人員配置の予測モデルを構築することを目指しています。また、機会コストの視点から優秀な人材の流出による売上機会の損失を算出し、採用および定着への投資の優先順位を検討する考えです。 数値で見る採用戦略は? まずは、日々収集している営業データと人材データを統合管理できるダッシュボードを構築し、問題の可視化を図ります。次に、相関分析と予測モデルの検討を通じ、「受注増加期の人材不足が残業の増加、ひいては離職率の上昇という負のスパイラル」にどのような影響があるかを定量的に捉え、適切な採用タイミングを予測するモデルを作り上げます。さらに、戦略的人材投資を実践するために、機会コスト分析によって優秀人材の定着に伴う投資効果を算出し、個別の引き留め戦略を検討します。特定の熟練者への依存構造も可視化し、業務の標準化やスキル継承プログラムの整備により、事業成長と人材確保のバランスをより戦略的に実現する経営体制への転換を目指します。

クリティカルシンキング入門

問いがひらく実践の扉

問いの意義は何? テーマ「問い」では、まず問いの意味や狙いを意識し、その問いを常に念頭において行動することの重要性を学びました。問いを共有することで、組織全体で方向性が統一され、互いの取り組みに対する理解も深まると感じています。 売上分解の狙いは? 実践の一環として、ある事例をもとに売上をどのように分解し、売上増加のための施策を考えるかを学びました。売上は店舗数、店舗あたりの客単価、そして客数に分解でき、特に客数を増やすことがまず重要であると示されました。具体的には、テレビCMなどを通じた認知度の向上、値下げやキャンペーンによる消費者へのインセンティブ、新商品の投入などが挙げられています。また、基本要件を満たす「QSC」や「MadeForYou」といった施策により、既存の顧客を取り戻す工夫もされている点が印象に残りました。 単価向上の方法は? 一方で、単価を上げるための方策も検討され、サイドメニューやセットメニューの充実、単価の高い新商品の開発が必要だとする考えが示されました。これにより、売上全体の構成比率において、店舗あたりの売上や客数が大きく伸びた結果、客単価も一定の割合であることが確認できました。 問題発見と解決は? 今回の学びを通して、問題発見力と問題解決力の両面がいかに重要かを実感しました。私が所属する部署では、抽象的な「採用強化」や「退職防止」「人材活用」といった大きなテーマが山積みになっている状況ですが、まずはこれらを細かく分解し、言語化・数値分析することで、実際に行動に移せるレベルまで具体化する必要があると感じました。 学びを振り返る? また、これまでの講義や入門編の学習内容も振り返り、分解、言語化、数値分析といったプロセスを手間と感じずに実行することが、最終的には効率的な問題解決への近道であると理解しました。こうした基本に立ち返ることが、今後の総合演習にも大いに役立つと確信しています。

アカウンティング入門

学びで極める損益の秘密

利益分析ってどう? 損益計算書は、売上総利益から当期純利益までの5つの利益項目で構成されており、各項目の意味や相互のつながりを理解することが重要です。例えば、経常利益が黒字であっても、特別損失の影響で最終的な当期純利益が赤字になる場合があるため、個々の利益の中身に注目する必要があります。また、売上高については単年度の数字だけでなく、過去の推移と比較することで、その変化の背景や要因を読み解く視点が求められます。各利益の数値は、過去との比較や同業他社との水準比較を行うことで、より多角的な収益性の判断に役立ちます。 価値をどう守る? 儲けを考える際には、やみくもに費用を削減するのではなく、自社が大切にしている価値を見極めることが重要です。実務では、具体的な事例に基づいてPDCAサイクルを回すことで、業務改善に結びつけることができると感じました。今後は、日々の業務においてどの指標に注目すれば改善につながるかをより一層意識していきたいと思います。 利益の段階って? たとえば、利益の各段階、特に営業利益や経常利益に影響を及ぼす業務を把握することで、財務的観点から改善すべき業務の優先順位を判断できます。また、複数月や前年同月との比較を心がけることで、単なる「売上」や「請求件数」の数字だけでなく、その意味や背景を読み取る視点が養われます。 黒字と赤字は何で? さらに、経常利益まで黒字でありながら純利益が赤字となる背景を理解しておくと、上司や関連部署との会話時に説得力が増し、経営層や営業部門との議論の際にも信頼感が向上します。KPIの設定や改善レポート作成の際に、損益計算書のどの段階に関係しているかを意識することで、より成果に直結する指標設計が可能になると感じます。 比較で何が分かる? また、同業他社との比較を通じて自社の利益水準や費用構造の違いを把握することで、業務効率の向上やコスト構造の改善につながるという点も、非常に参考になりました。

データ・アナリティクス入門

視点を超えて拡がるデータの世界

要素の重要性は何? 分析に必要な要素としては、プロセス、視点、アプローチの3つがあると学びました。前回はプロセスについて掘り下げた講義でしたが、今回は視点とアプローチに重点を置いて進められ、その重要性を実感しました。 視点の捉え方はどう? 講義では、まず視点としてデータを俯瞰的に捉えることの大切さが強調されました。一つのデータ情報に固執すると、全体のインパクトを見逃し、局部的な視点ではトレンドやパターンを捉え損ねる可能性があると感じました。そのため、まず広い視野で全体を把握し、どこを掘り下げるかを判断しながらスコープを徐々に絞っていくことが、目的達成のためには必須であると言えます。 視点の基本はどこ? 視点に関して、講義では以下の観点が挙げられました:  ・インパクト  ・ギャップ  ・トレンド  ・ばらつき  ・パターン 数値と図で説得できる? また、アプローチについてはグラフ、数字、数式を用いる方法が効果的であり、具体的な数値や図を使った分析が理解を深めるポイントとして紹介されました。 インパクトをどう捉える? 顧客のサービス利用データを検証する際には、どのセグメントが最も大きなインパクトを持っているか、また長期的な視点での変化を確認することが重要だと再認識しました。こうした視点から、インパクトの大きいセグメントに対して営業リソースを集中させたり、コンテンツマーケティングを推進する戦略も考えられます。 セグメント分析は十分? さらに、顧客セグメントの検証をより深堀りする必要性も感じました。導入ユーザーのセグメント検証においては、単に導入社数が多いセグメントだけでなく、導入社数は少ないもののインパクトが大きいセグメントが存在しないかを検討することが求められます。また、単なる属性データの比較に留まらず、実際の顧客行動をイメージしながらデータと照らし合わせて検証を進めることで、より実践的な洞察が得られると感じました。

データ・アナリティクス入門

ファネル分析で未病市場に挑む理由

数値分析の極意は? 数値分析では、プロセスごとに「率」にして検討することが有効です。A/Bテストは、同期間にランダムにユーザーを振り分け、その結果を比較する方法で、比較ポイントを絞ることが大切です。AIDAやAMTUL、AISASなど、プロセス設定に利用できるフレームワークは多様に存在します。また、ダブルファネルという概念もあります。これは、購買までのファネルと、購買後に他社に影響を与えるファネルが存在し、1人の顧客がその後の影響力で10にも100にもなる現代的な考え方です。 広告制約の壁は何? 私の業界では広告制約があり、顧客の声が届きにくいという問題があります。そのため、詳細な購買プロセスが追いにくく、単純なファネル分析は難しそうですが、未病分野の自費購入をターゲットとした市場には活用できる可能性があると考えています。営業部のプロセスにファネル分析を使用すれば、製品を少しでもよいと思ってもらえた後、どこがボトルネックになって採用決定に至らないのかを見極めることが可能です。AMTULが購買意思決定までのプロセスに最も近いと感じ、これを用いて考えています。採用までに多くのステークホルダーが関与し時間がかかるため、AIDAのような単純な興味や欲求だけでは購買に結びつかず、AMTULのように試用のプロセスが必須となるからです。 効果数値はどう変わる? プロセスとウォーターフォールチャートを掛け合わせた活用も試みています。プロセス段階に分けてグラフ化するのは初めてですが、採用後にカテゴリ別の売上内訳を見る際に使用します。ただし、プロセスが独自になりがちなため、段階設定には注意が必要です。さらに、ダブルファネルの考え方を応用し、購入施設からのエリア波及効果を数値で測る挑戦をしています。具体的には、1施設で売上が上がると、同医療圏内の売上や件数がどの程度上がるか、大施設の採用が小施設へどれほど影響を与えたかの数値化に取り組んでいます。

データ・アナリティクス入門

グラフでひも解く学びの軌跡

グラフ活用法ってどうする? 今週は、グラフの活用方法について学びました。データのばらつきを視覚的に把握するために、ヒストグラムが有用であると理解しました。たとえば、生徒の年齢のばらつきを見る際には、割合ではなく実数の分布に注目すべきだという点が印象的でした。 どの数値がポイント? また、分析でよく使われる代表的な数値についても復習しました。単純平均・加重平均・幾何平均・中央値など、それぞれの計算方法と用途を確認し、特に平均値は外れ値の影響を受けやすいことに注意が必要だと実感しました。 現場の指摘はどう読む? 現場でDX担当としてデータ分析に取り組む中、先日、部署ごとの退職率を比較して報告した際、経営層から数値の重み付けを考慮するよう指摘を受けました。当初はその意図が分からず戸惑いましたが、加重平均の考え方に近いのではないかと理解し始めています。ランキングだけで示すのではなく、ヒストグラムなどのグラフを用いて視覚的に説明できるよう工夫したいと思います。 数学の基礎は何が大切? 一方で、数学の基礎の重要性を再認識しました。平方根や標準偏差、正規分布と2SDなどの数式が全く理解できず、焦りを感じています。まずは基本を押さえ、Excelの関数でどのように表現できるのか試してみるとともに、ピボットテーブルの復習にも取り組む予定です。 具体例の探し方は? 今回の分析では、どの指標を使うべきか具体例がすぐに思い浮かばなかったため、今後はより多くの具体例を調べるとともに、実際に手を動かして理解を深めるつもりです。遠回りになるかもしれませんが、様々な切り口で数値を検討していきたいと思います。 専門用語、理解できる? また、専門用語の理解もまだ十分ではないと感じており、関連するデータの傾向把握についても、ひとつひとつ学んでいく必要があると実感しました。これからも引き続き、知識を着実に身につけていきたいです。

クリティカルシンキング入門

プロジェクト管理に活かせるイシュー整理術発見!

イシュー整理の重要性 イシューについて整理しました。 まず、いきなり考え始めるのではなく、目的を明確にすることが重要です。問いや課題に対しては、その本質や解決の道筋を考え、可能な解決策をいくつかカテゴライズします。そして、本質に対しての裏付けや根拠を数値を用いて行うことが必要です。 プロジェクト管理への応用は? 私はSIerでプロジェクトマネージャーをしています。そこで、この方法をプロジェクト管理やチームの問題解決の場面で活用したいと考えています。新製品開発やソフトウェアプロジェクト、業務改善プロジェクトなどで、リスクや課題を効果的に管理し、進捗を安定させるために用いるつもりです。 イシューの特定と優先順位付けとは? イシューの特定と優先順位付けについては、プロジェクト開始時に潜在的な問題やリスクを洗い出し、イシューとして登録します。各イシューについては、影響度と緊急度に基づき優先順位を設定し、重要な問題から対処していきます。 進捗管理のシステムは? 次に、イシュー管理のプロセス設計です。イシューの進捗を継続的に監視するために、専用のツールやシステムを使用します。また、各イシューには責任者を明確にし、対応策を実行する担当者を決定します。 効果的なコミュニケーション方法は? コミュニケーションと報告の部分では、プロジェクトの進行に合わせて定期的にイシューのステータスをレビューし、必要な対策を講じます。そして、進捗状況や解決策について関係者に適切に報告し、情報共有を行います。 問題解決後の改善策は? 最後に、問題解決のプロセス改善です。イシューの解決後には、対応策の効果やプロセスを評価し、フィードバックを収集して改善点を明らかにします。さらに、解決したイシューの事例を文書化し、将来的なプロジェクトで活用できるようにします。 これらの方法を通じて、プロジェクト管理がより効果的に行えるようになると期待しています。

クリティカルシンキング入門

情報分解のスキルで未来が変わる!

情報の分解のポイントとは? 今回の学習では、情報の分解の仕方を学びました。大きくポイントが4つありました。 1. 受け取った情報を加工し、知りたい情報が読み取れるように加工をする 2. 情報を分解するときに、機械的に加工するのではなく、知りたい情報が読み取れるように分解する 3. 分解の切り口を1つだけにするのではなく、複数の切り口で分解をする 4. 分割するときにMECE(Mutually Exclusive, Collectively Exhaustive)に分解する 特に学びを得た切り口は? 今回の学習では、特に3の項目が大きな学びになりました。情報の違いを探すときに、特定の切り口で分けて数値として違いが出ていても、もう一歩別の切り口で分解すると違う答えが見えることに気づきました。普段意識できていなかったこの点を「本当にそうか?」と疑うことは大事だと感じました。 また、「情報の全体を定義してから分割する」ということも、網羅的に情報を分割する上では重要だと思います。 具体的な活用シーンは? 1. 受領したデータを加工し、社内の打ち合わせやお客様への発表などで視覚的にわかりやすい情報に整理して表示する場面 2. 展示会の来場者アンケートを作成する場面 3. 社内の作業や資料のレビューの際に、抜け漏れがないかを確認する場面 結論をどう検証する? これらをいくつかの場面に適用してみようと思います。 1. グラフ化などをするときに、情報の分割前に切り口を考え、その後もう一度考えた切り口を振り返り、出した結論と比較したいと思います。 2. 昨年のアンケート作成時には、情報収集が難しく、網羅性のないアンケートになってしまっていました。今後はMECEを意識して項目を作成したいと思います。 3. レビューを頼まれた際、気になる部分しかコメントできていなかったので、情報の抜け漏れがないかを意識して確認していきたいです。

「数値」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right