アカウンティング入門

原点に立ち返る価値の再発見

価値の本質を問う? 企業にとっての「提供価値」を理解するためには、まず数値に頼る前にその本質を深く掘り下げる必要があると学びました。企業が提供したい価値を正確に把握し、それと見出した数値との間に乖離がないかを意識することが、戦略の策定や企業分析において極めて重要だと感じています。 原点を再確認? 特に自社の場合、日常の業務に追われるあまり、近視眼的な視点に陥りがちで、本来の提供価値や強みを十分に考察できていなかったと痛感しました。この気づきは、現在の業務に直結するものであり、原点に立ち返って見直しを進める良い機会となると捉えています。 未来戦略はどう? 今後は、自社の提供価値を改めて捉え直すとともに、複数の事業がそれぞれ持つ特徴を正確に把握しつつ、全体としての強みを明確にしていくつもりです。さらに、財務や営業、人事などの定量情報に加え、パーパスやESG経営といった定性情報も踏まえ、より包括的な視点で企業の価値を見極めていきたいと考えています。

戦略思考入門

学びの本質を見抜く力を磨く挑戦

規模の経済性をどう理解する? 規模の経済性について学ぶ際、その本質を見抜くことが非常に難しいと感じました。頭で何となく理解できても、実際に各設問に対して理由を述べるアウトプットは非常に時間がかかります。特に、設問3において素早く本質を見抜き、的確に表現するスキルがまだ十分に身についていないことを痛感しました。 数字の背後にある本質を捉えるには? また、Factbookからデータを参照し、課題に対する戦略を構築することも重要ですが、数字だけにとらわれず、その背後にある本質を見抜くためにはなお時間が必要だと感じています。 ヒアリングの重要性とは? 推移データやFactbookを使い数値目標を設定する前に、現場の声をヒアリングやインタビューで拾うことが重要です。それによって、数字やフレームワークだけに頼ることなく、実行可能な戦略を立てていきたいと思います。今月中に異なる分野の3人にインタビューを行い、より魅力的なコンテンツ戦略を構築することを目指しています。

データ・アナリティクス入門

効果的な分析方法を学び成功へ一歩前進

効果的な分析手法を学ぶには? 分析を行う際に、ただ漠然と進めるのではなく、ステップを考え、ロジックツリーを用いることやMECEを意識した切り分け方を学んだおかげで、より効果的な分析ができるようになった。これからは慣れに頼らず、きちんと目標を持って分析を行っていきたい。 売上向上への試行錯誤とは? 売上が伸び悩む中で様々な試行錯誤を続けているが、前回学んだ「目的」「仮説」「数字の性質」に加えて、今回の「ステップ思考」「ロジックツリーでの展開」「MECEを意識した切り分け」を活用し、過去の数値分析を再度行いたいと思う。 新規施策提案のためには? 新規施策を提案する際には、目標となる部分と仮説、そしてそれがステップ思考になっているか確認し、ロジックツリーを実際に作成して客観性があるかどうかを見極める。また、MECEを意識することで、意味のある分析・評価に繋がっているかどうかを自問自答していきたい。そして、その提案をメンバーや上層部に向けて発信していく予定だ。

アカウンティング入門

数字の裏に秘めた学びのヒント

決算報告書をどう捉える? 現在、システバックスの決算報告書を実際に確認する機会がありました。以前はただの数字の羅列に過ぎなかったP/Lですが、コンセプトや事業活動のイメージとリンクさせることで、数値の背景が見えてきたと感じます。システムエンジニアから税理士法人に転職し、少しずつ担当のお客様を持つ中で、今後はお客様へP/LやB/Sを説明する機会が増えていくと予想しています。そのため、今回の学びは非常に有意義で、企業についてさらに調べるなどして内省できる良い機会となりました。 説明方法はどう考える? ご担当のお客様には、数値を根拠にP/Lの結果や今後の動向を自信を持ってご説明しています。また、事業活動をヒアリングした内容を図などに落とし込み、お客様とのイメージを合わせる取り組みも行っています。今回の決算報告書の学びを活かし、先輩社員の説明面談にも同席し、学んだ視点でレポートを読み、フィードバックをいただくことでさらにスキルアップを目指していきたいと考えています。

データ・アナリティクス入門

平均だけじゃ見えない学びのヒント

平均値の弱点は? ビジネスや日常生活のさまざまな場面で代表値として利用される平均値ですが、実は大きな弱点があります。平均値はデータのばらつきを反映しておらず、同じ平均値でも、データの大半が平均値に近い場合もあれば、極端に大きな数値と小さな数値で構成され、平均に近い値が存在しない場合もあるのです。 重要要素は何? 苦情処理以外でもデータを活用する可能性は十分にあります。これまで、インフォメーションのヒットワールドでは似たような事例がいくつか見受けられましたが、どの要素が最も重要なのか、またすべてのデータを採用するのは現実的ではないと感じています。したがって、状況に応じてデータの加工が求められるのでしょう。 問い合わせ改善は? 一時的に問い合わせ内容を収集し、お客様が特に関心を寄せる内容を反映することで、その部分のサービス提供に工夫を凝らす考えです。さらに、第三者にこのデータを提供し、PADなどに入力することで、案内の効率化が期待できるでしょう。

データ・アナリティクス入門

データ分析で未来を描く方法

目的を明確にする重要性 目的を明確にすることは、分析作業の基本です。これまで私は、過去の経験に基づいたバイアスを持ちながら、取り組みやすい課題解決策から進める方法を取ってきました。しかし、バイアスを取り除き、基本に立ち返ることが重要だと感じます。分析では、比較や言語化が鍵となります。 数値化で課題を明確化 現状とあるべき姿とのギャップを分析し、比較することで、課題のレベルを数値化したいと考えています。業務レベルの改善や変革を推進するにあたっては、数値による判断材料の精度を高め、プロジェクト内での共通理解を促進し、推進の結果を最大限引き出したいです。 合意形成と重点課題の抽出 まずは、プロジェクトメンバーの間で目的を明確にし、合意形成を図ります。そのうえで、データの収集と加工を行い、比較分析により重点課題を抽出します。最後に、その分析結果を基にアクションプランを言語化し、業務レベルでアセスメントを実施して、体制、スケジュール、予算を計画します。

クリティカルシンキング入門

多角分析で心ひらく瞬間

データ分析の視点は? データを分解して見ることで、見え方が全く異なることに気づきました。数値の動向が感じられるような分解軸を柔軟に設定することで、さまざまな視点から分析が可能になります。 仮説検証のポイントは? 1つの軸だけでなく、他の軸も検討しながら負荷をかけることで、導き出した仮説の正確性を検証し、その精度を高めるプロセスがとても重要だと感じました。 顧客分析の切り口は? 実際の顧客分析においても、年代などのパーソナルな情報や興味関心のデータをもとに、何かしらの施策が検討できる可能性があります。流入している顧客層だけでなく、購買している顧客層についても、これまで以上に複数の観点から分解して分析することが大切だと思っています。 最適化の方法は? 分解する軸をどのように最適化していくかは議論の余地があり、試行錯誤によってアタリをつけていくのが良いと考えています。皆さんはどのように感じられたか、ぜひ意見を聞かせていただけると幸いです。

データ・アナリティクス入門

偏見を超えるデータの力

バイアスはどう捉える? データ分析を学ぶ中で、ただ数値を扱うのではなく、自己のバイアスを取り払い、タスクに合わせてニュートラルな視点に切り替える大切さを実感しました。このような状態で、高い専門性と比較するスキルを活かし、データから具体的な仮説を立証できると理解しています。 セキュリティは大丈夫? 社内で広くデータ分析を利活用するためには、堅牢なセキュリティ基盤とデータ基盤の構築が不可欠だと感じます。編集機能やデータ閲覧機能を適切に制御しながら、データウェアハウスを運用することで、業務に活かすための取組みが一層進むと考えています。 AI応用はどう進む? さらに、データアナリティクスを深く理解するために、4月から9月までの期間を通じて学習を進めるとともに、生成AIを取り入れたデータ分析への応用も視野に入れています。データウェアハウスから得られる結果や知見を、プログラムを通じて読み解くスキルの習得が、今後の発展に大いに寄与すると感じています。

アカウンティング入門

実例で感じる財務の魅力

講義内容は伝わる? アカウンティングの講義を通して、財務三表から企業の状況が理解しやすくなると感じました。各表の役割について頭ではなんとなく把握できた感はありますが、自分の言葉で説明しようとすると、実例や具体的な資料を見ながらでなければ難しさを感じています。さまざまなケーススタディを通して、頭の中での理解が即座にイメージに結びつくようになることを期待しています。 数値の意味、どう捉える? まずは、病院が公表する数値を読み解いてみたいと考えています。次に、月次や年間の推移から、その医療機関固有の特徴を把握し、他の医療機関や異なる業種との違いがどこにあるのか、またそれらの違いがどのように生じているのかについて考察していきたいです。 知識はどこまで定着? 最終的には、まず知識をしっかりと身につけ、実際に財務三表を見ながら理解を深めることが必要だと感じています。興味を持てる上場企業の財務三表を参考に、実際の事例を通して学んでいこうと思います。

データ・アナリティクス入門

今こそ見直す!全体把握で業務スッキリ

講座全体の流れは? week1からこれまでの内容を総ざらいした結果、実際の業務では一つ一つじっくり考える時間が限られていると実感しました。その中で、改めて講座全体の流れや全体像を把握できた点は今後の業務に大いに役立つと感じています。 整理と対策は? また、FY25 1Qの振り返りと今後の対策を検討する際に今回の作業内容が活かせると考えています。今年度は中期計画における節目の年であり、目標達成が不可欠なため、効率よく物事を整理し、考察していく必要があります。そのため、現時点での状況と課題の整理、そしてどの課題に打ち手を打つと効果が高いかをしっかり見極めることが重要です。 連携と見直しは? チーム内でも同様の検討が進められており、自分なりの仮説も含めて、積極的に意見を発信していこうと思っています。まずは来週までに、問題点の定義や数値の集計、そして課題となりうるポイントを明確にし、その後の対策についても検討していきたいと考えています。

データ・アナリティクス入門

幾何平均で拓く新視点の統計術

平均と標準偏差の意味は? これまで平均値と標準偏差をなんとなく使用していましたが、今回の学びを通じて、それぞれの利用目的や強みが明確になりました。特に、幾何平均については、これまで計算式が難しいという理由からあまり触れてこなかったものの、その特徴を理解できたことで、必要に応じて積極的に活用していきたいと感じています。また、標準偏差についても、グラフで見るイメージだけでなく、具体的な数値として求められることを知り、大変驚きました。 業務に活かす意図は? 業務では、マーケティング部門として販売実績の分析や経営層への成長率報告のデータ分析に役立てることができると実感しています。具体的には、各社の売上高を中央値や標準偏差で分析したり、販売実績の成長率に対して幾何平均を用いるなど、状況に応じた情報提示ができるように活用していきたいと考えています。 幾何平均の応用点は? また、幾何平均が適用できる場面について、さらに意見交換を行いたいと思います。

データ・アナリティクス入門

4ステップで拓く新たな可能性

問題解決の4ステップは? この講義では、ビジネスにおける問題解決の基本となる4つのステップ―What(問題の明確化)、Where(問題箇所の特定)、Why(原因の分析)、How(解決策の立案)―を学びました。現状とあるべき姿とのギャップを意識することで、問題そのものを正しく捉え、解決に向けた具体的なアプローチが可能になるという点が印象的でした。 どうして進化を狙う? また、単にマイナスの状態を回復させるだけではなく、既に正常な状態からさらに進化させ、より良い結果を生み出す方法にも目を向ける大切さを理解しました。この学びは、事業性評価や臨床試験の失敗理由の考察、交渉時に相手を説得する際の有効なツールとしても応用できると感じています。 数値情報はどう活用? さらに、データ解析の手法―例えばピボットテーブルの活用―を通じて、日常の業務や意思決定に具体的な数値情報を取り入れる方法を学び、実践的なスキルの向上を目指していきたいと考えています。

「数値」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right