データ・アナリティクス入門

数字から見える問題の本質と解決策への道程

分析の本質とは何か? Week1のポイントを復習しました。分析の本質は比較であり、比較する際に注意すべき点は、比較対象を揃えることです。問題解決のプロセスには、What、Where、Why、Howの4つがあります。 問題解決の4ステップとは? まずWhatでは、何が問題なのかを定めます。次にWhereで、問題がどこにあるのかを特定し、あるべき姿と現状のギャップを数字を用いて比較します。この段階ではフレームワークが有効です。Whyでは、なぜ問題が発生しているのかを探ります。そしてHowでは、どのように対処するかを考えますが、すぐにHowに飛びつかないことが重要です。 データ分析の注意点は? さらに、単純な平均値に惑わされず、データのばらつきに留意することが必要です。代表値として平均値、中央値、最頻値をチェックし、ヒストグラムを用いてデータにばらつきがないかを確認します。 仮説の検証方法は? 仮説を立て、その仮説が成り立つかを検証するためにデータを集めます。問題の原因を明らかにするためには、プロセスに分解する方法が有効です。解決策を見つける際には、複数の選択肢を洗い出し、それぞれの根拠をもとに絞り込みます。 チームでのデータ分析をどう進める? こうした復習を行った上で、実践問題に取り組んだところ、数値を見ることや問題の箇所を特定することがかなりスムーズになったと感じました。しかし、複数の回答を絞り出そうとすると視野が狭くなることがありました。データ分析を行う上では、一人で考えるだけでなく、チームメンバーの多角的な視点が必要であると感じました。そのためには、チームメンバーにもデータ分析の考え方を共有し、共通のプロセスを踏むことが必要だと感じました。 お客さまアンケートの分析は? 現在、上半期の施策などの振り返りを行っています。その中で、お客さまアンケートの分析業務が現在のメインの仕事となっています。この分析を通じて、お客さまからの評価のボトルネックとなっている部分を発見し、対策を講じる必要があります。 問題発見と仮説の共有方法は? まずは、問題がどこにあるのかを明らかにするために、関連するデータをビジネスプロセスごとに並べてチーム全員で意見交換を行います。問題の所在が見えてきたら、その原因について仮説を立て、チームメンバーでその仮説を共通認識にします。

クリティカルシンキング入門

クリティカルシンキングで広がる視点の力

多角的な視点はどう? クリティカルシンキングというのは、単に論理的に物事を考えるだけではなく、反対意見や異なる視点から幅広く批判的に物事を捉え、それによって最善の解決策を見出す思考法だと感じました。異なる立場や前提条件を持つ人々とコミュニケーションを図る際に、このように多角的に問題を探求し、アウトプットすることが、相手の納得感を高めることに寄与すると考えます。そこで、クリティカルシンキングを実践するためには、以下の2点に注意を払いましょう。 思考の枠組みは? まず、思考のフレームワークを身につけることです。フレームワークを活用することで、効率よく思考を深め、広げることができます。自分のスキルとして、これらを習得することに注力したいと思います。以前の講義で学んだMECE、5W1H、ロジックツリー、マトリックス図、So What So Whyなど、多種多様な思考法が存在します。無意識に使ってきたものも多くありますが、それらを意識的に適用することで、思考の精度をさらに向上させたいです。 結論は急いで? 次に、すぐに結論を出さないことです。なぜか、と問い続けることや、視野や視座を転換して考えることで、全員にとっての最善の解決策を見つけたいと思います。 計画は適切? プロモーションイベントの計画では、商品のターゲットが適切かどうか、前年のコンテンツを踏襲するべきかなど、企画の妥当性について数値や事例に基づいて上司を納得させる必要があります。このように、さまざまな場面でクリティカルシンキングが役立つと考えます。 意見のすり合わせは? また、部署を横断したプロジェクトの進行では、意思疎通や意思決定が難しいと感じることが多いです。関わる人々全員が目標や方向性を共有しているにもかかわらず、コミュニケーション不足から齟齬が生じることがあります。まず相手の視点から業務へのモチベーションを把握し、一方的に意見を述べるのではなく、相手の意見を考慮して伝えることに力を注ぎたいです。 会議でどう発言? 現在取り組んでいるイベントのコンテンツについては、時間的な余裕があるため、多様な意見を取り入れて再構築していきたいと思います。また、会議で即興の意見を求められることが多くありますが、思考のフレームワークを活用して、建設的な意見を述べられるように努めたいです。

クリティカルシンキング入門

数値分析にひたる楽しさを発見

数字の分解をどう進める? 数値を分析する際には、その分解が重要です。まず、視覚的に数字を分解する方法として、グラフや率に変換することで、新たな視点が得られます。また、年齢別、男女別、天候、曜日、時間軸、新規既存、場所、近隣施設、売場面積など、あらゆる角度から数字を分解することで、様々な発見が可能です。繰り返し分解することで、新たな傾向が見えてくることもあります。分解しても何も見えない場合は、他の切り口を試してみるのが良いでしょう。 数字分析の重要ポイントは? この分解の作業は、まるでダンジョンを探検するようなもので、新たな気付きを得るほどに面白くなります。しかし、無秩序に進めるのは危険です。そこで、MECE(ダブりなく・モレなく)を意識し、網羅的な数値の切り口を探すことが重要です。また、期間、金額、人数などの下限値や上限値を定義して分解するのも効果的です。 おすすめの分解手法は? 分解手法としては、以下の3つをおすすめします。 1. 層別分解:全体を2つ以上のグループに分ける方法です。例えば、年齢別や所得別に分解します。 2. 変数分解:売上や単価、販売数をもとに、利益率や原価率などに変えて分解する方法です。 3. プロセス分解:入店前、入店後、商品選択・支払い・退店などのプロセスごとに分解する方法です。この手法は、業務効率の改善にも役立ちます。 プロセス分解で何が見える? クライアントからの相談や自分たちの業務効率改善において、プロセス分解は非常に有効です。業務プロセスのどの部分で時間を使っているのか、その部分をさらに細分化し、どの作業に時間がかかっているのかを分析します。それにより、課題解決に繋がり、業務効率改善や業務内容の見直しなど、幅広い提案が可能となります。 問題解決へのステップは? プロセスに着目しながら業務を遂行することで、偏りを拭う習慣をつけ、問題のあるプロセスを分解してみることが大切です。その結果から多くの気付きを得て、解決の糸口を探りましょう。導き出した答えを他者と共有し、さらにブラッシュアップすることも重要です。これにより、3つの視点・視座・視野を広げることができます。 行動計画をどう立てる? 最後に、これらを活用するために計画的なトレーニングを行いましょう。まずは行動計画を立てることから始めて見てはいかがでしょうか。

データ・アナリティクス入門

対概念で拓く経営戦略の新視点

対概念の意義は何? 対概念とは、ある概念に対して反対または対照的な意味を持つ別の概念を考えることで、物事をより明確に理解し議論の幅を広げる手法です。問題解決に取り組む際は、原因をプロセスに分解する方法、複数の解決策を根拠をもって絞り込む視点、A/Bテスト方式を活用した実践検証、そしてデータ分析を組み合わせた段階的な課題抽出と検証の流れが重要となります。 M&Aリスクはどう考える? 例えば、M&A案件のリスク評価と意思決定においては、ポジティブな要素であるシナジー効果と、ネガティブな統合リスクを対概念として捉え、財務リスク、組織文化、オペレーションといった要因に分解して考えます。各リスク要因を定量化することで、M&A後の成功確率を高めるためのより正確な判断が可能となります。 統合戦略はどれが最適? また、企業の経営戦略策定、特にM&A後の統合戦略においては、段階的統合と急速統合という二つのアプローチを検討し、A/Bテスト方式でそれぞれの効果を比較します。統合プロセスの進捗データや業績、従業員満足度といった具体的な指標をもとに、どちらの戦略がより良い成果を生むかを実証的に評価していきます。 リスク評価の秘訣は? さらに、リスク評価のためのフレームワーク作成では、過去の成功事例や失敗事例をデータベース化し、財務、組織文化、オペレーション、市場環境といった指標を基にリスク評価シートを作成します。これにより、各案件ごとのリスクが客観的に評価され、精度の高い投資判断を導き出すことが期待されます。 定量化結果は何? 続いて、データ分析を用いた定量化では、財務データや従業員エンゲージメント、企業文化の適合度を測る指標を設定し、回帰分析や相関分析を活用します。特に、文化の不一致が従業員の離職率に与える影響などを数値化することで、過去のM&Aデータから成功パターンや失敗パターンを明らかにし、これを次の意思決定に生かすことが可能となります。 結果の信頼はどう確保? 対概念とA/Bテストを通じて物事を深く理解しようとする姿勢は非常に評価できます。今後は、どのような状況で対概念を活用するのが効果的か、またA/Bテストで得られた結果の信頼性をどのように確保していくかといった点について、さらに思考を深めながら実践につなげていくことが求められます。

データ・アナリティクス入門

実践で磨く解決力の秘密

プロセスはどう区別? 今週は、問題解決のプロセスにおいて、仮説を立てて検証し、解決策を考えるための考え方を学びました。まず、WHYの段階では、各プロセスを分けて考える手法の重要性を再認識しました。プロセスごとに名称や意味合いを設定し、母数や基準が異なる場合には「率」といった数値化の視点を取り入れることで、どの段階で数値が少なく、全体の推移がどうなっているかをバランス良く把握することが大切だと感じました。 対概念の効果は? また、原因の仮説を立てる際には、「対概念」という方法を用いることで、問題に関わりのある要素を洗い出し、それらを2つの対に分けることで、より幅広い視点から原因の可能性を探るアプローチの有効性を学びました。 A/Bテストの意味は? さらに、HOWの段階では、A/Bテストを通して仮説を実際に試し、データを集計しながら解決策へと繋げる方法について学びました。A/Bテストを行う際は、①目的と仮説を明確にすること、②一度に一要素ずつ検証すること、③条件(時間や期間など)を揃えることの3点が重要であり、これによりリスクを抑えつつ効果的な施策の検証が可能となります。 知識集約はどう進め? また、今回の学びを通じて、これまでの知識を集約し、プロセスを意識して丁寧に分析する重要性を再認識できました。仮説設定の根拠を明確にし、必要なデータを整理することで、より高度な分析に繋げるための前提意識を持つことが求められると感じました。 薬剤師業務の改善は? 一方、薬剤師業務のボトルネックの分析においては、業務を細かいプロセスに分解し、どの段階で時間と労力がかかっているかを明確にすることが、従業員の残業時間や患者の待ち時間短縮に直結する重要なポイントであると学びました。こうした検証を通して、設備の導入などの改善策の効果を試験的に確かめ、必要に応じて他の現場にも展開する判断材料とする考え方は、非常に実践的だと感じました。 A/B分析で見直す? さらに、部内でA/B分析を活用して、例えば店舗の処方箋枚数の伸び悩みという問題に対して、複数の要因を一つずつ検討し、原因を絞り込んだ上で対策を考える手法も学びました。これにより、問題の背景にある具体的な要因を多面的に理解し、適切な対策立案へとつなげることができると実感しました。

戦略思考入門

戦略思考で描く新たな未来

どんな刺激を得た? 今週は、他の優秀な受講生の事例や考え方を耳にする機会が多く、大変刺激を受けました。特に、考え方が明確な方々のお話を聞くと、上司やその周囲の方が戦略思考(もしくはその一部)を身につけ、周りにアドバイスしている様子が印象的でした。講義中にグロービスさんが度々触れていた、アウトプットと意見交換の機会が、学びの定着や考え方の変革に非常に有益であると感じました。 授業で何を感じた? ライブ授業では、差別化(VRIOの視点で語られる事例も見受けられた印象です)と、捨てる判断軸について多くの意見がありました。私も今後の事業企画において、この二点を特に重視していきたいと考えており、他の事例も積極的に取り入れることで、疑似体験を通して学んでいこうと思います。 キャリアはどう見る? また、キャリアビジョンについて考える機会があったため、改めて「2040年に介護のために帰省して暮らす場合、どのように生計を立てるか」という長期課題について見直すつもりです。 実践で何が変わった? 現状、本業で新規事業企画に関わる機会に恵まれており、すでに戦略面での議論もできる環境にあります。こうした実践を通じて知識を定着させるのにこれ以上ない機会だと感じています。一方で、現職を離れて帰省する場合、決まった時間で働くという会社員の立場が取りづらくなるため、会社に求められるスキルセットだけでなく、市場が求める多様なスキルの習得も必要だと考えています。 どのスキルを磨く? 情報のアンテナを広げ、自分や提供するサービスの価値をわかりやすく伝える能力―ロジカルな数値表現やライティングスキルなど―を磨くことが求められると実感しており、会社員としての立場を活かしてこれらの能力を実践的に習得していきたいと思います。 学びをどう共有? 現在、チームメンバーがいる環境の中で、本講義での学びをアウトプットし、議論の基盤となる知識の共有や自身の理解の定着に努める方針です。 戦略をどう築く? さらに、現在関わっているプロジェクトでは、5年後の売上目標を含む事業計画の解像度が低い状態にあり、上位層向けに盛りに盛った目標数値が先行している状況です。今後は、各種フレームワークを活用して説明可能な見込み値を試算し、不十分な点があれば新たな戦略を検討していこうと思います。

データ・アナリティクス入門

データ分析で見つける新たな視点

データ分析における比較の重要性とは? データを比較することは、他のデータと比較することでその意味合いを読み取ることにあります。繰り返しになりますが、「分析は比較なり」が重要です。単純な平均では見落としやすい情報を把握するために、データのビジュアル化を駆使し、バラつきを視覚的に理解することが求められます。比較を行い、グラフを解釈することで仮説を立て、その結果として次に分析すべきデータや分析の深掘りの方向性が明確になります。 代表値だけで十分か?アプローチを考える 大量のデータを比較するアプローチについて考える際、代表値の使用だけではデータの分布状況がわかりません。データの分布を考慮するために、標準偏差を併用します。標準偏差が大きければバラつきが大きく、小さければデータが集約していることを意味します。また、データをビジュアル化することも重要です。実際の業務では、加重平均とデータのビジュアル化が主に行われています。 代表的な数値には以下のものがあります: **代表値** 1. 単純平均 2. 加重平均 3. 幾加平均 4. 中央値 **散らばりを表す数値** - 標準偏差:標準偏差が大きいとデータがばらつき、小さいとデータが集約している。正規分布と2SDルールも考慮します。「起こりにくいことが起こっている」という実感値は5%です。 分析の深化にはどのプロセスが必要? 分析の内容に応じた代表値を使い、内容に応じたビジュアル化の方法を考えることが大切です。案件の特徴を「プロセス×視点×アプローチ」で分析することに重きを置くと良いでしょう。会社の施策展開にあたっても、目的に応じた比較を行い、ビジュアル化し、そこから仮説を立てて分析を深めていくサイクルを徹底していきます。過去の導入事例から仮説検証を行い、どの層にヒットしているかをビジュアル化し、現在進めているターゲティングの選定を進めていくことが求められます。 学びの共有はどのように行う? まず、メンバーにWEEK3の学びを共有し、現在取り組んでいる施策のターゲティングに役立てたいと考えています。根拠のあるデータを作成し、より良い意思決定に繋げることが目標です。代表値と標準偏差の仕組みを理解し、必要に応じて使い分けるために、日常の業務に取り入れてみることから始めましょう。

データ・アナリティクス入門

数字が語る!原因分析のコツ

原因分析のポイントは? 「why:原因を分析」という問題解決のステップについて学び、実際の業務に活用するためのヒントを得ることができました。原因分析では、問題がなぜ発生したのかデータを基に追及し、原因が特定できた後に解決策を検討するという流れを確認しました。 プロセス分解の極意は? この授業で得た学びは主に2点あります。まずは、データをプロセスに分けて考える方法です。課題では、ウェブサイトの広告表示から体験レッスンへの申込に至る一連のプロセス(広告表示→広告クリック→申込)の各段階のデータを比較し、同じ経路を辿った中でどこで数値が落ちているかを検証しました。比較する際は、各プロセスの分母が異なるため、率で示す点が重要です。率が低いプロセスに問題があると考え、具体的な原因を探る有効な手法だと実感しました。この方法により、どこから改善に取り組めばよいのかが明確になり、必要なデータの選定も容易になると感じました。 原因思考の広がりは? 次に、原因を考える際は思考の幅を広げる必要があると学びました。フレームワークの一つとして、対概念という視点を活用する方法があります。たとえば、「自社の戦略に原因がある」と「自社の戦略以外の要素に問題がある」という二つの視点から原因を考えることで、一方向への固執を避けることができます。この手法は、原因の決め打ちを防止するのに非常に有効だと感じました。 遅延の要因は? 実際の業務で、業務の遅れが他部署に影響を与えている場合、まずはその業務を複数のプロセスに分解し、どの段階でボトルネックが発生しているのか、数字を元に比較することが有効だと考えます。原因追求においては、MECEの考え方も必要不可欠です。さらに、原因に関わる要素が明らかになったら、それ以外の可能性も併せて検討することで、一面的な見方に陥らずに対策を練ることができると実感しました。 学びをどう今後活かす? この学びからは、事象には必ずプロセスが存在し、分解して比較することで原因を特定できること、そしてよい事例についてもプロセスの整理が応用可能であることを改めて確認しました。今後は、問題だけでなく成功事例にもプロセスの視点からアプローチし、より幅広い視野で原因と対策を考えられるよう努めていきたいと思います。

データ・アナリティクス入門

ナノ単科で見つける問題解決の鍵

どう進める? 問題解決のプロセスでは、ステップごとに考慮し、解決の基準を言語化し、数値化して、関係者内で合意を得ることが重要です。具体的には、問題の明確化(What)、問題箇所の特定(Where)、原因の分析(Why)、施策の立案(How)という流れで進める必要があります。あるべき姿と現状のギャップを定量化することも求められます。このギャップには、正しい状態に戻すための問題解決と、ありたい姿に到達するための問題解決の2種類があります。 どう区別する? また、MECE(もれなくダブりなく)に基づいた分け方での問題の区別が重要です。施策の検討においては、ロジックツリーを用い、施策案を作成し、ファクトに基づく評価基準で絞り込むことが必要です。さらに、複数の切り口を検討する準備をすることが大切です。 分析はどう? 定量分析には5つの視点があります。具体的には「インパクト(全体への影響度合い)」、「ギャップ(目標との比較)」、「トレンド(時間軸での把握)」、「ばらつき(集中、均一)」、「パターン(外れ値や変曲点の活用)」があります。特に外れ値については、積極的にビジネスに活用する視点が新しい考え方です。 数値はどう見る? 案①「正しい状態に戻すための問題解決」では、年度目標未達が具体的な問題であり、KGI(人数・収入・営業利益)やKPI(Web流入数、CVR、CTR)が定量化されています。やるべきことは、販売チャネル別の数値把握、変数分解の可視化、定量分析の5つの視点で再検証を行うことです。具体的には、販売チャネル別の人数・収入・利益を再検証し、優先順位を設計し、施策を可視化します。 組織はどう整える? 案②「ありたい姿に到達するための問題解決」では、来年度の組織編制が具体的な問題として挙げられています。計画人員やグループ数が具体的に定量化されており、現状の可視化、中長期的なトレンド把握、目標設定が必要です。具体的には、各課の強みや啓発点の洗い出しを行い、組織の現状の業務が将来の目標に向けて十分であるかを評価し、不足もしくは不要な業務を見定めます。 まとめはどうする? このように、問題解決のステップとMECEなどの手法を用いて、具体的な解決策を導き出すためには、論理的で整理されたアプローチが不可欠です。

マーケティング入門

ニーズの深掘り!ビジネス成功の鍵

顧客ニーズを探る重要性 WEEK.02では、「顧客のニーズ」について深く掘り下げた内容を学びました。普段は何気なく使っていた「ニーズ」という言葉がビジネスにおいて重要である理由を具体的に理解できたことは、大きな学びでした。 ニーズとは何なのか? まず、「ニーズ」という言葉は単なる「~したい」という欲求を超えたものであることがわかりました。表面的なニーズだけでなく、相手が気づいていない本質的な欲求を捉えて、具体的に提案することが大切です。このような深い欲求を「インサイト」として明確にし、何のために「~したい」のか、「◎◎が欲しい」のか目的を深堀りすることが求められます。 なぜニーズが大切なのか? ビジネスを進める上で、さまざまなシーンで優位性を保つためにニーズの理解が重要です。「ウォンツ」と「ニーズ」の違いもここで明確にされました。「ウォンツ」は分かりやすいが、競合が多く価格競争に陥りやすいのに対し、「ニーズ」は競合や顧客すら気づいていないインサイトを明らかにできればビジネスチャンスが高まります。逆に、ニーズを捉えられないと価格競争に巻き込まれたり、的外れな商品開発やプロモーションにつながります。 覚えやすいネーミングの秘訣 ネーミングは「覚えやすく」「ユニークで」「用途を連想しやすい」ことが重要です。また、商材や市場は自社の強みを活かせるものや場所が良いと考えられます。さらに、「ニーズ」に限らず、「ペインポイント」を見つけて「ゲインポイント」に変えることも大切です。これはカスタマージャーニーを行いながら、エスノグラフィーを重ねていくことで実現し、常にアンテナを立て続けることが求められます。 業務改善にどう役立つか? 新規受託業務や既存受託業務の見直しにおいて、この知識は非常に役立つと感じました。具体的には、新たな業務を現場や他部署から請け負う際や、既存業務のブラッシュアップに繋げられます。また、営業における機械購買や店内構成、広告宣伝、販売促進にも活用でき、結果が早く見えそうです。 今後、来期に向けた改善や提案の場で、この学びを活かした資料作成や数値分析を行い、「どうして改善する必要があるのか」「なぜその提案内容なのか」という点を、顧客ニーズの視点からプレゼンしたいと考えています。

アカウンティング入門

B/Sで読み解く企業の秘密

B/Sの違いをどう見る? B/Sについては、これまで業務の中で目にする機会が少なかったため、活用するチャンスがなかったが、今回のゲイルや総合演習を通して、PLとの関連性と役割の違いを認識し、企業を多角的に見るツールであることを実感することができた。特に、インフラ産業とクラウドビジネスのB/Sを比較する中で、インフラ産業は車両や駅舎、電線設備などの有形固定資産を多く保有(70%以上の割合)し、成熟した産業であるため負債が大きくなりがちである一方、クラウドビジネスは店舗や設備を必要としないため有形固定資産が少なく、新興の産業故に負債を抑え、純資産が大きい傾向があるという違いが明確に理解できた。 負債運用の意味は? また、アキコの事例を用いたゲイルでは、「負債」の考え方について学ぶことができた。負債を極力抑える運用の重要性と、成長のチャンスを逃さないために時には必要な負債が発生するという現実も示され、安定した企業は負債が大きくなりやすい一方、個人で事業を展開する場合は負債を小さくしておくのが望ましいという点を考えさせられた。B/Sは、お金の「調達」と「使途」のバランスを把握できる資料として、企業の成り立ちそのものを理解する上で非常に有用であると感じた。 自社B/Sの現状は? まずは、自身の会社のB/Sを確認し、分析を行うことが必要だ。現状を正しく把握し、運営上の数値管理のために何を追うべきか、またどの点に注力するかといった運営上の課題を明確にすることに役立てたい。同時に、他社のB/Sを読むことで成り立ちの違いを理解し、自社の今後の戦略について考える材料にしたい。 業界分析はどう進む? さらに、薬局業界で公表されているB/Sを確認し、流動資産、固定資産(有形固定資産、無形固定資産)、流動負債、固定負債の各項目とその組成について把握する。そして、自社のB/Sを見直し、企業の成り立ちや現状を正確に把握することが求められる。現在、5月に実施予定の管理者向け研修資料作成にあたり、財務三表について分かりやすく噛み砕き、自社の状況と外部環境を具体的に受講者に説明できるよう、PLやB/Sを再度読み直し、情報の整理を進めていく。こうした人に教えるプロセスを通じて、知識の定着を図っていきたい。

アカウンティング入門

数字が伝える成長のヒント

事業の価値は何? 事業活動は業種によって異なるものの、「顧客の視点で価値を提供するために活動する」や「リソース調達のための資金調達」という基本的な考え方はどの事業にも共通していると学びました。また、事業が順調に運んでいるかどうかは、会社の数値を多角的に見ることで判断できると感じました。成長性、生産性、将来性といった指標に加え、従業員のエンゲージメントが数値に間接的に影響するため、企業の状況を正確に把握するためには重要な要素となります。 数値はどう見極める? PLでは収益と費用のバランス、BSでは資金の調達状況、CFでは一定期間のお金の増減状況が重要視されます。これら3つの指標が揃うことで、事業の生産性や安定性、将来性を網羅的に理解でき、それぞれの情報が互いに補完し合うことも納得できました。また、利益余剰金が純資産に組み込まれることで事業が拡大し、資産が企業の安定性を示す指標となる点も印象に残りました。 知識はどう広がる? 部下への研修の際には、アカウンティング用語を噛み砕いて説明できるように意識する必要があると感じています。具体的には、PLやBSのどの部分を見て何を把握すべきか、そこからどう業務改善に結びつけるかまで提案できるようにすることが求められます。会社の数値を年単位、月単位、日単位と幅広く把握し、必要な要素を抽出、継続的に情報をチェックすることで、上司や部下と数値を通じた対話が可能になると考えています。さらに、自身の資産、収入、支出を数値化し、課題を明確にして家計をマネージメントする力も養いたいです。 課題はどこに? 現状の知識でPLの理解を深めるため、まずは自社のPLを用いて違和感のある数値を洗い出し、現時点で考えられる課題を書き出すことが第一歩です。その上で、分からない用語や不明点を整理し、アカウンティングの講義を受講して疑問を解消していくことが重要だと思います。また、部下への教育の際には、自分が分かりやすいと感じた用語の解釈や表現をメモしておき、積極的に活用するよう心がけます。さらに、私生活でも家計簿をつけて収入や支出を把握し、数値に基づく管理方法を実践することで、数字に対する苦手意識を改善し、事業活動に対する感覚を養っていきたいと考えています。

「数値」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right