データ・アナリティクス入門

仮説×分析で開く解決の扉

仮説立案の基本は? 仮説には、結論に至る仮説と問題解決に焦点を当てた仮説の二種類があり、問題解決の仮説では「What(問題は何か)」「Where(どこに問題があるか)」「Why(なぜ問題が発生しているのか)」「How(どうすべきか)」の順序で検証することが基本と学びました。 フレームワークは効く? また、仮説を立てる際には、3C分析(市場・顧客、競合、自社)や4P分析(製品、価格、場所、プロモーション)といったフレームワークの活用が有効で、これにより具体的かつ詳細な仮説を構築しやすくなると理解しています。 効果検証はどう? 現在、交通系ICカードで決済するとポイントが10倍になるキャンペーンの効果検証に取り組んでおり、決済回数や決済金額の増加などを評価指標としています。この分析に際しては、問題解決の仮説を立て、3C分析や4P分析を積極的に取り入れることで、データ分析の精度を向上させることを目指しています。 分析精度を上げるには? 所属部署では専門のデータ分析担当者がおらず、これまで独学で自己流に分析を行ってきました。今回学んだ仮説の立て方やフレームワークをさらに活用し、数値の取り方や検証方法を体系的に整理することで、分析の精度を一層高めたいと考えています。

クリティカルシンキング入門

軸を変える!データの新発見

最初のLIVE講座の印象は? クリティカルシンキングの総まとめの週では、最初のLIVE講座で「自分の思考の癖を知る」というテーマが特に印象に残りました。その後のLIVE講座では、week1~5で学んだ知識を活かしながら、2つの問題に取り組み、その中で数字の並びを見ると細部に過度に意識が向いてしまう自分の癖に気づかされました。そこで、まず問題全体を把握し、数値を見える化する、軸を変えて視点を変えるといった手法を段階的に取り入れることの大切さを実感させられました。 数字分析はどう進む? さらに、数字の羅列や傾向を分析する際、現実の業務の中でも工数の見直しやシステムの性能分析などが必要になる状況を思い起こしました。今回学んだデータ分析のツールを活用すれば、初めに考えすぎず、さまざまな角度からデータの整理と視覚化を行い、その上で仮説を立て補足説明を探すという実践的なアプローチが可能だと感じました。 どのデータ視覚化? 今後は、単に収集したデータに基づいて行動するのではなく、まずはデータを多角的に分類し、視覚化する作業を徹底して行います。そして、その中から得られる示唆をたくさん書き出し、グループ化や抽象化を通じて整理し、自分の視点をさらに深める検討を進めていきたいと思います。

データ・アナリティクス入門

論理で拓く未来への一歩

現在の状況はどう評価? 問題解決には、まず最初に現在の状況と理想とのギャップ、つまり「あるべき姿」と「現状」の差を明確にすることが必要です。このギャップは、分析の際に数値化することで、問題の規模や深刻度が具体的に把握できます。 問題発生の場所は? 次に、問題が具体的にどこで発生しているのかを検証します。問題を細かい要素に分け、見なくてもよい部分を除外することで、焦点を絞りやすくなります。 原因は何だろう? その後、なぜ問題が発生しているのか、その根本原因を徹底的に分析します。そして、最後のステップとして、どのように解決策を実行していくかを具体的に考えます。ここでは、ロジックツリーやMECEの考え方を活用することで、多角的な視点から検討し、説得力のある解決策をまとめることができます。 解決策はどこから? この問題解決の手法は、売上の予算と実績の差異を説明し、対策を検討する際に非常に有効です。問題解決のステップを意識することで、効率よく課題に取り組むことができると感じています。また、これまであまり活用してこなかったロジックツリーやMECEの手法も、論理的な考え方を鍛えるために必要であり、簡単な分析にも応用することで、次第に使いこなせるようになりたいと思います。

データ・アナリティクス入門

数字の背後に輝く発見

統計でどう比較する? 分析は、単なる数値の羅列からその違いを見出すだけではなく、統計的な手法を用いて比較することが大切です。たとえば、平均は代表的な統計手法ですが、平均値だけではデータの全体像を正確に把握できない場合があります。そこで、最大値、最小値、中央値、最頻値などの複数の指標を合わせて用いることで、より明確な違いが見えてきます。また、数値だけでは分かりにくい部分はグラフなどのビジュアルツールを活用することで、視覚的に比較しやすくなります。 仮説は信頼できる? 現状のデータ分析では、まず仮説を立て、その仮説に基づいた統計的手法やグラフを用いて分かりやすい資料作成に努めています。しかし、仮説が常に正しいとは限らないため、偏ることなく中立的な立場でデータを検証し、仮説に反する結果があれば素直に認めて正確に分析することが求められます。 方法はどう変える? また、現行の分析手法や視点を根本から見直すことで、データの収集方法や指標の選定、解釈の仕方まで再検討し、実態に即した新たな気づきを得ることが重要です。その上で、得られた新たな視点をもとに具体的な改善策や施策を立案し、現場での運用につなげることで、分析結果を実効的に活用するサイクルを確立していきたいと考えています。

戦略思考入門

仕事の視点が変わる!ナノ単科の魅力

視点が変わった瞬間とは? 今回の受講を通じて、自分の仕事に対する視点が大きく変わりました。特に印象深かったのは、マーケティングの講義です。普段、何気なく目にしている広告や商品配置の背後に、実は高度な戦略があることを知りました。お客様の心を動かすには、単なる商品の良さを伝えるだけでなく、感情や生活の一部として結びつけることが大切だと感じました。 財務知識がもたらす視野 また、財務の講義では、数値の見方やその背景にある意味を理解することができました。予算管理や経費削減だけでなく、どの投資が将来的に利益をもたらすかを見極める重要性を学びました。これにより、日々の業務だけでなく、長期的な視野での意思決定がいかに重要かを再認識しました。 リーダーシップの新たな発見 最も役立ったのは、リーダーシップに関する講義です。リーダーとしての自分の強みと課題を客観的に見つめ直す機会となりました。部下とのコミュニケーション方法やモチベーションを上げる手法についても、具体的なアドバイスを得ることができ、早速実践しています。 今後も学んだことを活かし、自己成長とともにより良い組織作りに貢献したいと思います。受講前には想像もしなかった知識やスキルを吸収することができ、大変満足しています。

戦略思考入門

「数値で実現!提案力を磨く」

大企業の優位性は? 【規模の経済性】 数値化してみると、大企業が有利であることを改めて感じました。規模の経済性を活用するには、固定費を中心としたコストを総合的に考慮する必要があることを学びました。中小企業が大企業に対抗するためには、以前学んだ差別化戦略が有効だと考えています。 数値は何を示す? 【総合演習】 数値から何を読み取るかについて、実際に手を動かし見えていない数値を導くことの意義を感じました。出した数値を根拠に上司に提案する際には、納得のいく説明が求められると認識しました。分析するだけでは意味がなく、それを生かすことが必要だと思います。 業務統一で何が変わる? 現在、私の部署では各店で独自に行っている業務を集約し、統一化を図っています。これにより、規模の経済性における固定費削減が期待できると考えます。各店での活動を一括で行うことで、時間短縮と人件費の削減につながると感じました。 提案はどう進める? 企画や提案を上司にする際には、数値的根拠を持って説明することが重要です。そのためには、見えている数値に加え、数値を分解し見えていない要素を自ら導き出す努力が必要です。また、得られた数値を相手にわかりやすく説明する能力も求められると感じました。

データ・アナリティクス入門

全体を俯瞰する新たな問題解決法

問題の本質は何? 問題解決に取り組む際、原因から入るのではなく、そもそも何が問題なのか、問題を切り分けたときにどこに課題があるのかという視点を持つことの重要性を学びました。普段はなかなかできない取り組みだったため、新たな視点を得る良い機会となりました。また、思考は訓練によってしか成長しないと感じ、今後も意識的に考え続けたいと思います。 営業成果はどう見る? 営業チームの成果分析においても、この考え方は非常に有用だと実感しています。優れた成果を上げる営業担当者の存在が一因となる場合もありますが、実際には全体を俯瞰することで見えてくる異なる要因が大きく影響していることが多いです。そのため、営業活動全体を見渡し、どこにボトルネックがあるかを正確に把握することが重要だと考えています。 数値の謎は何? また、数値を確認する際も、まずは全体像を把握し、すぐに要因を考え込むのではなく、どの部分に問題が潜んでいるのか、どのような切り口で検討すべきかを検討するプロセスが必要です。そして、切り口が明確になった段階で数値を集計し、分析していくという流れを当たり前にできるように努めたいと考えています。さらに、この考え方をチーム内で共有し、周囲の理解を得ることも大切だと思います。

データ・アナリティクス入門

数値が導く成長の新戦略

現状を数字で見る? まず、あるべき姿と現状とのギャップを定量的な数値で示すことの重要性を再認識しました。問題解決ややりたいことに取り組む最初のステップとして、具体的な数字で現状を把握することは有効だと感じています。 バランスはどう掴む? また、ロジックツリーの活用についても実践を通してバランスを取ることが大切だと思いました。特に、あまりやりすぎず、適度な範囲で感覚を掴むことが求められると実感しています。 目的は明確か? 現在、支援中のプロジェクトでは、目的が曖昧なために要件が固まらないという問題があります。これは、現状とのギャップを定量的に示せていないことが一因と考えています。一方で、自身の仕事に「定量的に示す」を適用する際には、どの要素を数値化すべきかが課題となっている点も感じました。 目標との差はどう? 自分の戦略作成に関しても、会社から与えられた目標に対してどの程度のギャップがあるかを明確にする必要があると認識しています。そのため、現状の支援プロジェクトのなりたい姿、すなわち目的をより具体的かつ明確にすることが今後の課題です。戦略策定にあたっては、ロジックツリーを用いて、現状とのギャップに起因する問題点を洗い出し、改善策を検討していく予定です。

データ・アナリティクス入門

振り返りが未来を変える瞬間

復習はどう進める? これまでの学びを振り返り、今後のありたい姿と具体的な取り組みを体系的に整理できました。振り返りを進める中で、全ての内容を完全に洗い出せたわけではなく、すでに忘れてしまっている部分も多いことに気づきました。そのため、何度も繰り返し復習し、実践の中で活用することが大切だと感じています。 管理とサポートの課題は? 私の業務は、製品の管理とサポートに関わるものです。サポート内容に対する不満と製品そのものへの不満があり、それぞれ解決すべき課題が異なります。また、即座に対処できるものと、投資や時間を要するものも混在しています。相関分析を活用して、不満の原因となる主要項目を特定し、優先順位をつけた上で対応していく意向です。 方向性のズレはなぜ? これまでの学びの中で、方向性を見誤ったり着眼点がずれてしまうことがありました。そのズレが生じた原因を、経験や定性的なデータをもとに検証し確認する必要性を感じています。さまざまなフレームワークを活用し、仮説を立てたり目的を明確にすることが、今後の正確な分析に欠かせないと考えています。ただし、数値だけに頼ると誤った解釈につながる恐れがあるため、解説書や事例を通じて知識をさらに深めるよう努めたいと思います。

データ・アナリティクス入門

数字が紡ぐ学びと成長の物語

各項目分解の効果は? 各項目を分解して、それぞれの数値に注目する手法は非常に有効であると学びました。実際、インサイドセールスの業務では各項目に基づいて数値を集計しており、このやり方が資料作成などの他の業務にも応用できることを実感しました。 A/Bテストの判断は? 一方、A/Bテストに関しては、正直なところ疑問点が残りました。教科書上では理解できる内容ですが、実際に予算を投じる判断となると、やはり検討が必要だと感じます。 図解と数値比較の視点は? また、資料作成時に業務の図解を作成する際、各項目を分解して図にする考え方は今回学んだ内容に似ていると感じました。しかし、実際に数値を比較する際は、割合を用いたシンプルな方法が最適だとも思いました。そのため、簡単な割り算を暗算できるようにしておくことが大切だと考えます。 実践習慣の重点は? さらに、実践に向けた習慣として、以下の点を意識していきたいです。まず、図解のパターンを把握すること。次に、簡単な暗算を身につけること。そして、what、where、why、howの流れをフレームワークとして常に念頭に置き、議論の根本から取り組むようにすることです。これらを習慣化して、業務に生かしていきたいと思います。

データ・アナリティクス入門

現場を解剖!数字と直感のコラボ

見えるギャップは何? データ分析では、目についた情報にとらわれやすく、都合の良い解釈に陥るリスクがあると感じました。しかし、What / Where / Why / Howの切り口で数値同士を比較し、実際の現場で何が起きているのか確認することで、あるべき姿と現状のギャップを明確にし、解決への道筋を意識することが大切だと学びました。 KPI設定の真意は? また、サイト分析におけるKPI設定では、ロジックツリーの考え方を活用して全体を俯瞰し、各階層に分解するMECEを意識したアプローチに新たな気づきを得ました。こうした手法は、課題解決や売上、集客の分析においても非常に有用だと考えています。 具体分析の切り口は? さらに、現在取り組んでいるECサイトのデータ分析では、感度の良い切り口を増やし、より具体的な分析を行いたいと思います。クライアントのサイト課題をあぶり出し、ロジックツリーに落とし込むことで、強化すべきポイントを整理する作業に役立てていくつもりです。 今後の施策は? 引き続き、現場の状況確認を踏まえながら、What / Where / Why / Howの視点とMECEを意識して分析を進め、課題解決に向けた具体的な施策を模索していきます。

データ・アナリティクス入門

問題解決の基本を再確認:MECEとロジックツリーの活用法

問題解決の基礎を学ぶ 今週は、問題解決の4ステップ(What→Where→Why→How)のうち、What(問題の明確化)について学びました。目的を見失わないために、あるべき姿と現状のギャップを数値や定量的に示すことが重要です。そのため、MECEを使い、漏れなく重複なく分解して考えると良いということを再認識しました。 分解の難しさをどう克服する? 過去にロジックツリーを学んだことがありますが、MECEを意識しながら何で分解すべきかを羅列するのは難しいと感じています。多くの場合、目の前の情報や限られた知識だけで分解した気になってしまうことが多いです。この課題を解決するために、最近は生成AIを活用し、プロトコルやフレームワークを使って客観的な情報を得る機会が増えています。これにより、自分でロジックツリーを使って分析しつつ、他者やAIから得られる情報を組み合わせて問題を明確化していきたいと考えています。 学びを日常でどう活かす? 毎月の会議資料や日常の部門の問題解決手段を検討する際に、この学びを活用します。ステップを踏んで考え、MECEを意識しながら、広く情報収集し、ロジックツリーを使って情報を分解することで、まずは問題を明確にすることから始めたいです。

「数値」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right