データ・アナリティクス入門

平均だけじゃ語れないデータの魅力

平均値だけじゃない? データを可視化する際、平均値を中心に考えがちですが、加重平均や幾何平均といった別の手法も存在し、目的に応じて使い分けが必要だと改めて感じました。また、平均値は外れ値の影響を受けやすいため、標準偏差での比較やグラフを用いて全体のばらつきにも注目することが重要であると学びました。 ヒストグラムの理由は? 年齢分布のグラフについては、ヒストグラムを選択しましたが、その理由が十分に明確にできていなかったと感じています。なぜヒストグラムが最適なグラフであるのか、今後は選択した理由を具体的に説明できるようにしていきたいと思います。 指標の選択は? 過去データとの比較を行う際、単純平均や割合のみに頼るのではなく、数値の規模やばらつきも考慮して加重平均や幾何平均、さらには中央値など、複数の指標を取り入れる必要があると再認識しました。 仮説思考はどう? また、データ分析のプロセスにおいて、これまであまり意識していなかった作業の流れを見直し、今回学んだ「仮説思考のプロセス」を参考に、目的を明確にし仮説を立てながら作業を進めていくことが大切であると感じました。 資料のまとめ方は? さらに、分析データを資料にまとめる際には、記載している数値(代表値)がどのようなものなのか、またどのようにグラフ化しているのかを明確にすることが求められると考えています。業種によっても適切な可視化方法が異なるため、差し支えない範囲でその違いを把握し、説明できるよう努めたいと思います。

リーダーシップ・キャリアビジョン入門

現場で磨くリーダーの挑戦

数値目標達成の秘訣? 私は営業のプレイングマネージャーとして、チームと個人の数値目標(予算)の達成に責任を負っています。予算達成のためには、自身だけでなくチーム全体でマーケットを正確に把握し、どこに何をどのように売るかという戦略の立案と実行が求められます。 戦略の言語化はどう? 戦略の立案・実行にあたっては、メンバーに対して依頼事項や全体像(目的や達成すべき姿)を言語化し、見える化して伝えるよう心がけています。また、メンバーの理解度を確認しながら進めるとともに、悩みや行き詰まりがある場合は迅速にヒアリングし、情報共有できる環境を整えています。 全員でリーダーシップ? さらに、私自身だけでなくメンバー全員がリーダーシップを発揮できるよう、私自身が実践している取り組みを体験できる体制づくりにも力を入れています。 最適な業務進捗は? 一方で、経験の浅いメンバーが多い中で多くの仕事を回す必要があり、任せすぎることで負担がかかる懸念もあります。そのため、どのように業務を進めるのが最適なのか、日々試行錯誤しています。こうした状況において、皆さんはどのように業務を推進しているのか、ご意見をお聞かせいただければと思います。 交流はどう高める? また、営業職であるため出張や外出が多く、メンバー間でコミュニケーションをとる機会が少ないと感じています。チーム内でどのようにコミュニケーションを活性化させているかについても、ぜひ意見交換させていただきたいです。

データ・アナリティクス入門

振り返りから見える未来への一歩

原因はどこで? 問題の原因を探る際には、まずプロセスに分けて考えることが重要です。どの段階で問題が発生しているかを明確にするため、原因を細分化し、全体を俯瞰することが効果的です。一概に「どうすれば良いか」を変えるのではなく、判断基準に基づいて選択肢を絞り込むことが求められます。 解決策は何で? 解決策を検討する場合は、複数の選択肢を洗い出し、その中から根拠をもって最適な方法を選び出すプロセスが必要です。目的と仮説の設定、実行、結果の検証と打ち手の決定という流れをしっかり踏むことで、効果的な改善が可能となります。検証項目やテスト要素は一要素ずつ実施し、他の環境要因の影響を避けるために、同じ期間内での実施が望ましいです。 A/Bテストの真意は? また、A/Bテストはシンプルで運用や判断がしやすく、低コストで少ない工数、さらにリスクを抑えた状態での改善が期待できます。テストの目的や仮説を明確にし、数値化できるデータを用いることで、検証プロセスがスムーズに進み、次の仮説や決定へと繋がります。 ボトルネックの所在は? さらに、問題のボトルネックを考える際は、問題を発見するために「何が問題なのか」「どこで発生しているのか」「なぜ問題が起こっているのか」を多角的に検討し、プロセス全体を整理することが重要です。たとえA/Bテストがシンプルであっても、同条件に揃えることが難しい場合は、具体的にどの要素が影響を及ぼしているのかを洗い出し、最適なテスト方法を選択する必要があります。

戦略思考入門

時間を操り効率を最大化する方法

どこに集中すべき? リソースには限りがあるため、どこに集中し、どこにエネルギーを注ぐのかを選択する必要があります。そのための選択ポイントとして、まずは明確なゴールを設定しましょう。これにより、何を選び、何を捨てるべきかの指針が得られます。次に、数値的根拠を示すことで、判断を主観や経験則に頼らず、客観的に評価することができます。加えて、成果を定量的に測定することで、継続的な取捨選択が可能になります。最後に、ゴールと数値的根拠に基づき優先順位を明確にすることが重要です。この「選択と集中」によって、限られたリソースを最大限に活用できるのです。 自動化はどう進化? 選択の結果が正解かどうかは未来にしか分かりませんが、「自分なりの判断基準を持って選択すること」が大切です。本来、「時間」と「品質」はトレードオフの関係にあると言われますが、バックオフィス業務の自動化はこれを克服する可能性を秘めています。自動化により、業務の効率化による時間短縮、人的エラーの軽減での高品質化、さらには成果物の品質の均一化が可能になります。 業務整理で変化は? 優先順位の高いものにリソースを集中させるためには、まずは現在の業務を圧縮する必要があります。これにより、業務の増加に対応するためにも、業務整理を行い、何を優先すべきかを再確認することが重要です。時間というリソースを有効活用するためにも、生成AIや自動化ツールに関する知識を深め、その活用を通じて、重要な業務に集中できる環境を整えたいと考えています。

データ・アナリティクス入門

問題解決の視点で成長する方法

何が最優先? 問題解決の考え方では、まず最も重要な問題を特定することが大切です。「何が問題か?」という視点から始め、数値を比較して問題の所在にあたりをつけます。また、理想の計画と現状の未達成状況を把握し、そのギャップを埋める方法を検討します。数値の比較では、見る必要のない範囲を見極めて効率的に分析を進めることも重要です。 現状はどう捉える? 現状把握の際には、問題をさらに深掘りするための切り口を考え、その仮説や優先順位をつけていきます。この過程では定性的な情報も取り入れることが重要です。特に、数値に頼りがちな初期の分析では、仮説の形成において定性的な情報を活用することが印象的でした。 分解して見える? ロジックツリーの層別や変数の分解を用いて課題に取り組むと、目標達成のための具体的な施策が見えてきます。たとえば、採用施設数や売上の向上、コストカットといった課題に対処する際は、変数分解の考え方が役立ちます。また、メーカー推奨品の効果を確認する際には、計画と実績を数値で評価し、感覚的な良し悪しに頼らず客観的に判断することが求められます。 分析の工夫は? 分析を進める際には、「見なくてもよい範囲・数字・切り口」を適切に除外することで、効果的な分析が可能になります。データの切り口についても、何が効果的か考え、必要であれば追加のデータ取得を検討します。また、チームメンバーとアイデアを共有し、他に異なる切り口の可能性がないかを確認することも重要なプロセスです。

クリティカルシンキング入門

視覚化で魅せる!伝わる文章作り

視覚化で理解は進む? 相手の理解を促進するための「視覚化」について学びました。具体的には、まずメッセージとの整合性を保ち、相手が情報を探し回らなくてもスムーズに理解できるようにすること。そして、情報を流れに沿って提示することが大切です。また、グラフには必ずタイトルと単位を記載するなど、基本を抑える点も重要だと感じました。 文章はどう魅力的に? ビジネスライティングに関しては、良い文章にはいくつかの要素が必要ですが、その中でも「相手に読んでもらえる」ことが盲点になりがちです。特に冒頭にアイキャッチとなる要素を配置することで、読者の関心を引き付ける工夫が効果的だと学びました。 提案資料の伝え方は? クライアント向けの提案資料や自社メディアの媒体資料を作成する際は、伝えたいメッセージがしっかり伝わるよう、クライアントに情報を探させず流れに沿って情報を示すことを常に意識する必要があると感じました。一方、社内の別部署への提案では、数値データだけでなく、相手が動きたくなるようなメッセージを組み込み、視覚化して伝えることが有効だと思います。 アイキャッチの効果は? また、デジタルコンテンツの提案や進行といったシーンでは、アイキャッチの活用が大変役立つと感じました。資料作成に取り掛かる前には、伝えたいメッセージとそれをどのように視覚化するかをしっかり下書きして考えること、さらに良質な視覚資料やアイキャッチの事例に触れ、自分の中にストックしておくことが重要だと実感しました。

データ・アナリティクス入門

振り返りで切り拓く未来

集客前提を疑ってみる? スクールの課題に対する対応優先順位を誤ってしまいましたが、そこには「また間違った集客を繰り返しそう」という隠れた前提がありました。まずは、この前提を改めることが必要であり、その上で真に解決すべき課題を特定する必要性を感じました。また、生徒データの切り口に関するブレストの中で、「ああそうだ、その観点も必要だ!」との意見があったことから、広い視野を持って落ち着いて検討する重要性を再認識しました。 数字の分析意図は? 分析したい項目がそもそも十分に取得できていない場合もあるため、あらかじめあきらめる部分もある一方で、見るべき数字の優先順位はしっかり決めて取り組む意向です。具体的には、イベントアンケート結果や申込者のデータについて、単に分析するのではなく「何が知りたいのか?その目的は何か?」と自分に問いながら進めるようにしています。 アンケート分析の意義は? 各イベント終了後には、アンケート結果と申込者属性の分析を行い、その内容を報告する必要があります。その際、以下の点を意識して業務にあたっています。まず①どの数値項目を優先的に見るのか、次に②その数値が他のイベントと比較して問題ないか、さらに③比較する際には条件を揃えているか、そして④関係者に報告する際には自分の仮説をセットで伝え、議論を促すかという点です。 特に②以降の実施が十分ではないと感じているため、限られた時間の中で箇条書きなどで条件を明確にし、意識しながら取り組むことを心がけています。

戦略思考入門

視野広げる!実践で磨く戦略術

戦略の真意は何? 戦略とは、効率よく目的を達成するために何を行い、何を控えるかを選択することですが、現状では日々の業務をただ繰り返すだけになっており、広い視野で全体を見据えた判断や、長期的な視点に基づいた判断ができていないと感じています。 講座のポイントは? 今回の戦略思考入門の講座では、ビジネスフレームワーク、基本戦略、事業経済性などについて学びました。単に各理論を知っているだけでは十分な戦略には結びつかないため、自分の業務に具体的な状況として適用できるよう、理論の考え方を深化させたいと思います。 売場戦略はどう? また、売場作りにおいては、POSデータに現れる数字だけでなく、その背景にある顧客の状況や自社の状態も重視し、自店舗の戦略に生かしていきたいと考えています。従来は、売れている商品=お客様に支持される商品という結論に至っていましたが、この方法では現状のニーズは把握できるものの、長期的には同じ手法に固執して停滞する恐れがあると同時に、会社全体の経済性も十分に考慮されていませんでした。 地域経営の今後は? 今後は、より広い視野で地域社会にとって必要とされる店舗運営や、会社全体の利益向上に寄与する戦略を構築していくことが重要だと認識しています。自店舗や地域の状況をフレームワークを用いて分析し、その結果を基に各行動に反映させることで、POSデータの数値も長期的な視点や地域のお客様、会社全体の利益につながるかという観点で再評価して取り組んでいきたいです。

クリティカルシンキング入門

数字の背後にある真実を解き明かす方法

数字の背後に何を見いだす? 数字を見る際には、単なる数値を追うのではなく、その背後にどのような事実を見いだしたいかを考え、仮説を立てて分析することが重要です。データを収集する際には、手元にある情報だけでは偏りが出る可能性を念頭に置き、多様な視点から情報を捉えることを心掛けるべきです。 データ分解の鍵は? データを分解する際には、「いつ」「誰が」「どのように」という観点を含め、網羅的に考えることが必要です。そして、本当にその推論が正しいのか、さらなる傾向を2、3考えてみることも重要です。分解して何も見つからなくても、それは失敗ではありません。切り口が不明確な場合は、まず分解を試み、それでわからなかったら特定の傾向がないことを確認することが意味を持ちます。 売上増減の要因は? 売上の増減を分析するときは、顧客や商品ごとに要因を探り、傾向を把握して未来の施策に活かします。過去の傾向に従うだけでなく、今あるデータを新たな視点から見直し、「本当にそうか?」と常に疑問を持ちながら進めることが求められます。 他組織の施策も見直してみますか? 自組織の施策と売上推移を振り返る際には、数値をグラフ化して新たな観点がないかを再考します。他組織の施策や売上推移についても、提示されている視点のみに依存せず、仮説をもって直接問いかけ、新たな傾向を探ります。うまくいっていない事例がある場合は、その要因をチームメンバーとともに分解の視点で考察し、どのように対処すべきかを話し合います。

データ・アナリティクス入門

代表値で解く!データ発見の旅

代表値の魅力とは? 今回の学習では、従来の平均値だけでなく、加重平均、幾何平均、中央値といった代表値の種類について新たな知見を得ることができました。それぞれの概念を学ぶことで、データ分析の基本的な考え方を再確認する良い機会となりました。 グラフ選定のポイントは? また、グラフの選び方についても、これまで感覚的に選んでいたグラフの代わりに、何を伝えたいのかという結論を明確にした上で選定する重要性を学びました。これにより、視覚的にデータを効果的に伝える方法を理解できるようになりました。 データ読み取りの工夫は? さらに、データの読み取りにおいても、これまで直感に頼って見ていた部分を見直し、特徴的な箇所に注目するという具体的な指標を取り入れる点が印象に残りました。より重点的に情報を把握する手法を学べたことは、今後の業務に大いに役立つと感じています。 Web分析の疑問点は? 業務面では、Web分析の中で代表値の使用機会が少なかったため、なぜ使用しないのか疑問が生じました。具体的には、1ユーザーあたりの平均ページビュー数や訪問時間帯の最頻値の取り扱いについて、今後の必要性を再考するきっかけとなりました。 数値羅列の問題点は? 最後に、CSVで抽出される数値の羅列では異常値に気づきにくいという実務上の課題も再認識しました。毎日管理しているデータを視覚化することで、より直感的に異常値や問題点を把握し、効果的な分析につなげたいと考えています。

クリティカルシンキング入門

数字で導く!分析の新たな視点

データ加工で全体像を把握するには? データを加工する際には、与えられた情報をそのまま受け取るのではなく、全体像を把握するために必要な項目を追加することが重要です。単に生の数値を羅列するのではなく、表として整理することで、様々な気づきを得ることができます。 グラフ化で得られる洞察とは? また、グラフ化する際には、数値をどのように区切るかが得られる解釈に大きな影響を与えます。どのように分ければ、より良い気づきを得られるかを意識しながら数字を整理することが求められます。グラフ化はあくまで手段であり、そこから得られる洞察を基に仮説を立て、実際の行動に結びつけて改善を図ることが目的です。 傾向が見つからないときの価値は? さらに、数字を分解してグラフ化した結果、傾向が見つからない場合もありますが、それは失敗ではありません。むしろ、傾向がないことが判明したこと自体に価値があります。 私はソフトウェアエンジニアなので、数字を分析する作業はあまり多くありません。しかし、例えばチームのミーティング時間を削減する際、いつ誰がどれだけの時間をミーティングに費やしているのかを分析するために、このような方法を活用できると考えました。 分析作業の目的をどう意識する? 分析作業に取り組む際、つい情報をまとめることが目的になりがちです。しかし、「何のための分析作業なのか?」、「仮説を得るためにはどのようにまとめるべきか?」といったことを常に考えながら、分析作業を進めたいと思います。

アカウンティング入門

B/Sをブロックで読む新しい視点

B/Sの読解スキルをどう活かす? B/Sから会社のビジネスが読み取れるとともに、それがどのように数値として現れるかを学べました。特に重要だと感じたのは、その会社のイメージを持ちながら読み取ることの大切さです。また、B/Sを「5つのブロックに分けてみる」という読み方をすることで、考え方が散らかることなく確認できることが分かりました。 どの視点でB/Sを読むべきか? 会社ごとにB/Sの現れ方は異なりますが、「全体像を掴む」、「お金を有効に活用しているか」、「倒産のリスクは高いのか」という視点はどの会社にも当てはまるため、これからもその視点で確認していきたいと思います。 倒産リスクをどうキャッチする? 自分の仕事での活用の前に、まだ正しく読めているか不安が残るため、まずはウェブから拾える情報を基にB/Sを読んでみようと思います。その理解が正しいことを確認したら、自社に関連する情報を入手し、自分の見解を加えてデータとして保管し、社内関係部門と共有したいと考えています。主な目的は取引先の倒産リスクを早期にキャッチすることです。 カネ研動画で理解を深める? B/Sについてはまだ学びが必要だと感じているため、動画を再度確認して理解を深めるつもりです。特にカネ研の動画が分かりやすいので、これを主に利用して確認します。さらに、ウェブから得た情報を読み、自分なりの見解を持ち、その見解も含めて正しいかどうかを社内の専門部門に協力してもらいながら理解度をチェックします。

「数値」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right