クリティカルシンキング入門

多角的視点で探る数字の裏話

数字はどう見える? 数字の分析では、単に数値をそのまま解釈するのではなく、多角的に検証することの重要性を実感しました。MECEの観点から数字を整理・分析することで、現状を正確に把握できるだけでなく、結論に至った理由や背景も明確になると学んだからです。 意見共有はどうする? また、さまざまな立場の人と意見交換する際、分析した数字を根拠として現状を共有することは、認識の齟齬を防ぐうえで大切だと感じました。たとえば、次の企画を提案する際、「なぜこの企画を行うべきなのか」を過去の実績や傾向を基に説明すれば、相手に納得感を持ってもらいやすく、スムーズにアクションへとつなげることができると思います。 議論の進め方は? そのため、事前準備として過去の実績数値をMECEの視点で整理し、どのポジションや役割のメンバーであっても理解できるよう、複数の角度からの分析結果を基に議論を進める姿勢を大切にしたいと感じました。

データ・アナリティクス入門

仮説思考が導く学びの未来

分析と仮説のバランスは? データ分析の軸として「分析は比較である」だけでなく、仮説思考についても学びました。仮説を立てる際、バイアスによる思考の偏りが影響する可能性があるため、一度他者の意見を聴くなど、客観的な視点を取り入れてバイアスを抑える工夫が重要だと感じました。 データ収集はどうする? データ収集については、オープンデータの活用も有用ですが、世の中に存在しないデータは自分で集めることが大切だと学びました。確かにこの作業は大変ですが、地道な取り組みが結果として大きな意味を持つと実感しました。 報告資料の工夫は? また、月次報告の資料作成に関しては、現在提示している数値とグラフの表現方法を見直す必要性を感じました。具体的には、数値に関しては棒グラフ、比率については円グラフを使用するなど、視覚的な情報の伝え方を多様化し、リソースの過不足など新たな課題が明らかになるかどうかを検討したいと思います。

クリティカルシンキング入門

視点を変える分析で得た新たな発見

最適な分解の方法は? 分解の切り口によって異なる視点が得られることを実感しました。MECEには主に3つの種類があり、無駄と重複を避けるためにはいきなり細かく分けずに進めることが有効であると学びました。階層別、変数分解、プロセス分解を試し、それぞれの分析の対象に合わせた適切な方法を選ぶことが重要です。 医薬品の使われ方は? 自社が取り扱う医薬品の使用傾向を把握する際にも応用できると感じました。患者層の理解に加えて、別の薬剤を選択する医師の傾向も調査すると、効果的な対策が立てやすくなるのではないかと思います。 データ検証はどうする? また、毎週の社内ミーティングでは、それまで試したことのない切り口でデータを分析してみます。これまでのデータも同じ切り口で分析可能かを検討し、社内メンバーと重複なく実行できているか確認します。得られた結果から仮説を立て、それに基づいた活動を行い、次週に検証していきます。

データ・アナリティクス入門

クイズで学ぶ比較と本質

比較で見える本質は? 「データ分析の本質とは何か」という視点から、『比較』の重要性に気付かされました。目的達成のために、どの要素を比較すべきかを考える際、目先のことにとらわれず、本質に目を向ける必要があると実感しました。特にクイズ形式の事例は、この点を分かりやすく示してくれました。 経営とデータ活用は? また、経営においては経験や勘も重要ですが、成長とリスクテイクのバランスをとるためにはデータ分析が欠かせないと感じています。現状、社内に十分なデータ活用の文化が根付いていないため、まずは意思決定に役立つデータを整備し、データ活用への理解を深める啓発活動に注力したいと思います。 信頼をどう築く? さらに、データ分析結果の有効性を社内で理解してもらうためには、まず信頼できるデータを整えることが重要です。必要なデータの所在すら不明な状態からのスタートとなるため、地道な取り組みを積み重ねていく覚悟です。

データ・アナリティクス入門

比較で見える学びの真実

Aの有無はどう影響? 分析の本質は、効果があるかどうかを明確にするために、Aがある場合とない場合を直接比較する点にあります。Aの有無で起こる違いを比較することにより、効果の有無がはっきりと浮かび上がります。 比較対象は何を基準に? また、適切な比較対象の選定も重要です。分析したい要素以外の条件を揃える「Apple to Apple」の視点を持つと同時に、成功事例だけでなく失敗したケースも考慮する「生存バイアス」に注意する必要があります。成功だけに目を向けると、誤った判断につながる恐れがあるためです。 学びを活かすには? 今回の学習で特に印象に残ったのは、「分析は比較なり」という考え方です。仕事の場面、たとえば事業計画で事業の方向性を示す根拠や理由を説明する際、比較の手法が非常に役立つと感じました。今後も自分の意見や判断の根拠を示す際に、この考え方を意識して分析に取り組んでいきたいと思います。

アカウンティング入門

ビジネスモデル分析で見つけた新たな視点

ビジネスモデルの理解を深めるには? ビジネスモデルによって提供される価値が異なるため、どこに費用がかかり、どのように利益を生み出すかを理解することができました。他社のP/Lを見比べることで、その特徴や費用のかけ方がわかり、彼らの戦略を想像する手がかりになると感じました。 自社の毎月のP/Lをどう読み解く? まず、自社の状況や自分が関わる事業の状態を、毎月のP/Lをしっかりと読み込むことで理解していきたいと思います。そして、単に計画と実績を把握するだけでなく、なぜそのような結果になったのかを検証し、今後の対策に何が必要かを自分の課題として業務に活かしたいと考えています。 直近と過去のP/Lをどう比較する? さらに、直近のP/Lと過去のP/Lを比較して、どの数字がどのように変化しているのかを分析し、現在の自部門の問題点や必要な対策を明確にして、自分のアクションプランに取り入れていくつもりです。

データ・アナリティクス入門

目的意識で切り拓くデータ分析

目的は何のため? データ分析を始める際は、まず「何のためにこのデータを分析するのか」という目的意識を常に持つことが大切です。あらかじめ、どのような答えが得られるかをイメージしながら、分析に取り掛かると良いでしょう。 仮説と可視化の意義は? また、データ分析のステップとして、仮説思考に基づいたロードマップを設定することで、全体の目的や認識を共有し、より納得のいく結果が導けます。さらに、データを可視化すると、さまざまな視点や切り口、解釈の可能性が広がり、複数の判断軸を持つことができます。 実務の判断はどう? 実務では、データを活用する「ここぞというタイミング」を見極めることも重要です。そのために、何を解決したいのか、どのようなデータが必要か、データの収集方法やその後の展開についても具体的に考える必要があります。まずは、手元にあるWeb解析のデータを確認し、整理を進めてみましょう。

アカウンティング入門

数字が教える、企業成長のヒント

数値で見る評価は? 事業活動を評価するためには定量的なアプローチが不可欠です。財務諸表は、その数値的な側面を理解し、分析や判断、戦略の立案を行うための基本的なツールであると再認識しました。今回の講座を通じ、財務諸表の読み解きという重要なスキルをより確実に身に付けたいと感じています。 財務三表はどう読む? また、自社の財務三表をしっかりと解釈することで、業績や直面している課題、全体の状況を具体的に把握し、自分自身の問題として捉え直す能力を養いたいと考えています。 経営報告はなぜ重要? さらに、経営層への報告や社内での議論の際に、会計の視点を取り入れることで、説得力のある提案や発言を行えるようになることを目指しています。そのためにも、社内外で自社や同業他社、競合の財務諸表に触れる機会を積極的に増やし、実際の数字を用いて講座で学んだ内容を反映させながら、実践的なアプローチを進めていきたいです。

データ・アナリティクス入門

全視点で紐解く成功への道筋

仮説はどんな風に考える? 仮説は決め打ちせず、幅広く網羅的に立てることが必要だと感じました。what?、where?、why?、how?という観点で問題を捉えることが求められており、講義では課題解決の文脈で語られていたものの、成功事例を解明し、より確かな仮説を構築する場面にも役立つと考えています。 売上はどこから生まれる? また、どこで売り上げが上がっているのか、その属性がどのようなものか、そしてなぜ好循環が生まれているのかを分析することは重要です。これにより、来年打つべき施策を導き出すことができるため、ビジネスプラン作成時にも活用できると考えます。 指針はどう示すべき? さらに、メンバーへ活動指針を示す際に、論理的で説得力のある説明ができれば、単に「同じことをやれ」という指示であっても、そのアクションが個々の成果につながることが明確になり、やる気を引き出す効果が期待できると思います。

データ・アナリティクス入門

実践へつなぐ振り返りのヒント

プロセス整理の効果は? これまでの学びを活かして課題に取り組む過程で、プロセスごとに整理して考えることで、闇雲に取り組むよりも効率的に時間を短縮できることを実感しました。今後は、What→Where→Why→Howの視点を意識しながら課題解決に臨んでいきたいと考えています。実務ではまだ訓練が必要だと感じるため、講義で学んだ自分の身近で取り組みやすい内容から実践していこうと思います。 データ活用の成果は? 2ヶ月前に新たな環境やシステムが導入されたため、その効果を検証する目的でデータを活用してみたいと思います。もし改善が見られない場合には、改めてWhat→Where→Why→Howのアプローチを試してみるつもりです。 新手法の可能性は? また、A/B分析の活用場面は現状の職場では明確な適用例は思い浮かびませんが、新たに検査項目を導入する際には有効な手法となる可能性があると考えています。

データ・アナリティクス入門

仮説の種が戦略を育てる

仮説の捉え方はどう? 仮説を立てる際、時間軸と結論の視点で捉えるのか、あるいは問題解決のための手段として捉えるのか、細かく分解できることに気づきました。漠然としていた仮説も、目的と必要な手段を明確にすることで、より効果的かつ実践的なものに仕上げることができると学びました。 本当に必要な策は? 売上向上を目指す中で、「何が必要か?」という曖昧な問いだけでは、的確な戦略が立てられないという経験があります。そのため、問いを細分化し、一つ一つの要素に対して仮説を立て検証することが重要だと実感しています。 現状分析の手法は? 具体的には、まず自部署の業務範囲における現状の顧客アプローチ方法を洗い出し、効果があるものとそうでないものをデータに基づいて検証します。その上で、検証結果を踏まえて問題解決のための仮説を構築し、ボトルネックとなっている部分の改善策を検討していく手法を実践しています。

データ・アナリティクス入門

データのバイアスに立ち向かう新視点

生存者バイアスのリスクとは? 「生存者バイアス」は、分析を主とする仕事に携わる人でも陥りやすい問題であると実感しました。データの扱い方だけでなく、分析対象の選び方についてもバイアスにとらわれず、ニュートラルに進めることが、自分の課題だと気付くことができました。 目的を明確にする重要性 BPOとして業務に携わっていると、データの使用目的が特に重要である場面が増えると感じています。以前の「マーケティング」という大義のもとでは、目的から外れることは少なかったのですが、目的を明確にすることが、業務全体でますます重要となりそうです。 データの純粋な観察方法 今回の講義を通して、データを純粋に観察する習慣を付け、仮説を立てることを重視し、比較対象が正しいかの確認を怠らないようにしたいと考えています。業務でバイアスの怖さを感じているため、事前の確認によって、バイアスの回避を心掛けたいと思います。
AIコーチング導線バナー

「分析 × 視点」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right