マーケティング入門

ターゲティングで売上アップの秘訣を学ぶ

商品に対する受け入れ先をどう定義する? どんなに優れた技術を持っていても、その商品の受け入れ先が定義されていなければ、それは「絵に描いた餅」に過ぎません。「誰に売るか」を明確にするためには、顧客を多様な視点でセグメンテーションし、ターゲティングを行うことで差別化したポジションを確立することが重要です。これにより、売上の最大化につながることがよく理解できました。 ターゲット層をどう絞るべきか? 私たちの自社商品はヘルスケア関連であるため、健康に関心が高い一定の年齢層をセグメント化することが求められます。そのターゲティングを行うには、さらなる切り口が必要です。たとえば、健康に興味を持ち、お金を投じる傾向のある高所得層や、特定のライフスタイルを持つ層に焦点を当てるという仮説が考えられます。 データ分析で見えるギャップは? 過去の自社ソリューションの購買データを分析し、イメージしたターゲットとのずれがないかを確認します。もし乖離が見られる場合、その原因を追求しなければなりません。また、「健康への関心✖️高所得」以外の新たな訴求ポイントを会議で洗い出し、自社のポジショニングマップを作成します。これをもとに、来年度の営業戦略の立案に活用します。

データ・アナリティクス入門

問題解決のための仮説構築法を再確認

仮説構築の重要性を学ぶ 今週は仮説構築の方法を学びました。仮説を立てる際には、複数の仮説を立て、その仮説同士に網羅性を持たせることが重要だと感じました。特に印象に残ったのは、仮説を立案しても都合の良い情報だけに頼らないことです。この点で、チームメンバーにも受講してもらいたいと強く思います。 ミニマム検証の重要性 仮説を立てた後、ヒアリングやアンケートなどを通じてミニマムに検証を行い、そのプロセスを繰り返すことが新規事業の場でも求められます。このことを再確認できました。 検証結果報告の注意点 現在、10月の実証実験に向けて、検証目的や結果の仮説を立案しています。検証結果を報告する際には、都合の良いデータだけを取得し、反論を排除することは絶対に避けたいと感じています。そのため、3C分析や4P分析といったフレームワークを活用し、再度検証結果の仮説立案を試みる予定です。 仮説立案を継続する意義 日々の業務においては、改めて仮説立案を実行し、問題解決の仮説について考えていきたいと思います。具体的には、what、where、why、howといった視点から仮説を再度見直すことで、自分の業務に対する関心や問題意識を向上させようと考えています。

クリティカルシンキング入門

データ分析で学ぶ!実践で磨く思考力

結論は本当に正しい? データを扱う際には、まず計算して情報を加工し、複数の視点から分解し、得られた結論が本当に正しいかどうかを疑うことが重要だと学びました。表や数字を眺めて悩むよりも、実際に手を動かして考える方が効果的であると感じています。 調査結果をどう見る? これからは、マーケティング調査の結果を見て、どのようなニーズが存在するのかを理解するために使おうと思っています。これまでは、マーケティング部から提供された考察を読み、データに違和感がなければ納得していました。しかし、今後は得られたデータを自分で加工および分解し、その上で考察してみようと思います。そして、共有された考察が本当に正しいのかについても疑いの目を持つことを心がけたいと思っています。 自分で検証してみる? 今後、調査結果が共有された際には、自分でもデータを一度加工・分解してみるようにします。MECE(Mutually Exclusive, Collectively Exhaustive)を意識しつつ、まずは手を動かして、加工や分解に慣れることを目標とします。そして、得られた考察には常に疑問を持ち、自分の意見を形成したら、他の人にもそれを共有するように心がけます。

データ・アナリティクス入門

論理と仮説で挑む解決の道

どうして仮説思考? データ分析においては、目的を明確にし、仮説思考で取り組むことが重要だと再認識しました。問題解決のステップを復習・整理する良い機会となり、筋の通った仮説を立てるためには、多面的な視点からロジックツリーを活用することが有効であると実感しました。一方で、可能性のある原因を網羅的に洗い出すという点ではまだ苦手意識があるため、今後も意識的に仮説思考の習慣を身につける必要があると感じました。 離脱上昇の背景は? 自社のSaaSプロダクトの中では、あるものについて利用者の離脱率が上昇している現状を踏まえ、本講座で学んだ問題解決のステップを振り返りながら検討を進めています。複数の解決策を洗い出すことができたら、それを今期の重点施策として実施し、PDCAサイクルを回す計画です。 論理思考がなぜ大切? これまでの取り組みでは、なんとなくデータを眺め、漠然とした仮説に基づいて解決策を考えてきました。しかし、本講座を通じて、論理的な思考と筋の通った仮説検証こそが、問題解決に直結する重要なプロセスであることを学びました。また、取り組みの中でミーティングを通じてチームメンバーとアウトプットや意見交換を行うことの大切さも実感しました。

クリティカルシンキング入門

チームで紡ぐ課題解決の知恵

根本解決の問いは? イシューを明確にし、チームと共有しながら常に問い続ける必要性を改めて感じました。さまざまな角度から物事を分解することで、根本的な解決策を探ることが重要であり、その際、できることとできないこと、また優先順位を決めることが問題解決につながると実感しました。 議論の迷いは何? ミーティングでは、チームのイシューを合わせるのが難しくなる場面(具体的な話題に偏ったり、別のイシューに話が逸れる場合)が何度もありました。こうした状況を踏まえ、イシューを見失わないよう適宜わかりやすい形で提示し、イシューの出し方についても壮大になりすぎていないか、またわかりやすいかを意識してチームメンバーとすり合わせを行うことが大切だと感じました。 共有の工夫はどう? 今後は、イシューを特定しチームと共有できるよう、起こっている事象をより明確に説明できる方法を準備していきたいと思います。具体的な手段としては、事象を分解(MECEなどの視点やデータ分析を活用)し、わかりやすい言葉で伝える取り組みを進めていきます。また、相手に情報を探させることなく、必要な資料を整えた上で、常にイシューを意識したミーティングや会話を実現するよう努めます。

データ・アナリティクス入門

MECEで切り拓く!新たな論理学習

理想と現状の違いは? 問題解決では、まず理想の状態と現状のギャップを定量的に把握することが重要だと再認識しました。現状を正常な状態に戻す対策と、ありたい未来の実現に向けた解決策の2つの視点が必要であることを確認しました。 ロジックとMECEはどう? 今回の学習でロジックツリーとMECEの考え方について改めて学ぶ機会を得ました。これまで自己流になっていたロジックツリーを正しく再理解できたのは大変有意義でした。また、MECEの手法により、漏れや重複を防ぐことの大切さを実感しました。普段の業務では口頭だけで場合分けを行い、チーム内に認識のズレが生じることもあるため、今後はロジックツリーを活用し視覚的に共有するよう努めたいと思います。 分析の壁はどう? 一方、日常の業務においては、数字を追いかけ原因を探る分析作業が少ないため、新たに異動してくるメンバーが「分析」という言葉に戸惑うケースも見受けられます。演習問題の形式では対処できても、実際の業務課題にこの手法を効果的に結びつけるのは難しいかもしれません。そのため、全体像を把握しながら論理的思考を実践し、可能な限り定量化して原因を追究する問題解決のプロセスを指導していく必要性を感じました。

デザイン思考入門

顧客の声とデータが描く未来

顧客視点はどうですか? 自社サービスの継続利用のための課題設定に際して、定性分析の手法を用いることにしました。顧客からの意見とともに、顧客接点に立つ営業部門からの声も取り入れ、複数の視点から情報を収集しています。また、暗黙知にも着目し、背景にある顧客倫理や潜在的ニーズを明らかにすることを重視しました。 迅速な設定はどう? 当初、一から定性データを収集する案も検討しましたが、社内で声がけを行ったところ、既存のインタビューやアンケートが意外にも多く集まりました。今回、迅速に課題設定を進める必要があったため、既存の定性分析結果に加え、定量分析や営業組織からのヒアリング結果をもとに課題設定を行う予定です。 分析手法は信頼できる? 定性分析は、質そのものに着目して行うコーディング手法など、すでに学術的に信頼されている手法がいくつか存在します。これらの分析から導かれたデータをロジックやプロセスに基づいて構造化することで、仮説を見出すことが可能です。一方、定量分析は仮説を磨き上げることが目的ですが、定性分析は新たな仮説の発見を主眼としています。ユーザーが抱える課題を的確に特定するためには、具体的な視点からのアプローチが不可欠です。

クリティカルシンキング入門

営業成績向上のカギはデータ分析!

--- 分析の重要性をどう捉える? 分かるということは、分けることです。ひとつの観点だけでなく、全体をざっくり分けてから更に分解していくことの大切さを学びました。例えば、単に率や平均の傾向が見えたとしても、他の視点から考慮する必要があります。これまで、分析の必要性や意味に疑問を抱き、実行をためらうことがありましたが、たとえ数字が出なくても、失敗したとしても、それ自体に価値があるという考え方を知ることができました。 リソース配分の最適化は可能? 営業所全体の新規顧客と既存顧客の比率と目標達成率を比較し、自身の数値と照らし合わせることで、異なる点を検討し、業績向上に繋げていきます。また、受注、失注、継続の際にどんな癖やパターンがあるかを分析し、既存と新規にどの程度リソースを割り当てる必要があるかを判断します。 振り返りを活かすには? 毎週の振り返り時には、他者と自身の数値を比較し、次週の行動指針を設定します。定量的に分析する習慣を身につけることで、説得力のあるトークができるようになることを目指しています。さらに、自身の営業活動において、どの局面で受注できているか、失注しているかを再確認し、改善点を見つけていきます。 ---

マーケティング入門

質と戦略で顧客を魅了する

マーケ戦略の意義は? マーケティングは、顧客が満足した状態で利益を得る手法であるという定義が、とても印象に残りました。特にエンターテイメント産業では、作品や商品の質の良し悪しを重視してきた自分にとって、「顧客の行動変容を起こせたか」という視点は、今後の行動指針として重要になりそうです。 複数アプローチは? 製品を顧客に購入してもらうことで利益を生み出す業態であるため、マーケティングでは複数のアプローチが必要であると感じました。たとえば、①顧客満足度が高い質の高い商品を作る視点と、②出来上がった製品をいかに多くの人に届けるかという視点とがあり、さらに他のフェーズも存在します。それぞれのポイントで成功確率を上げるために、マーケティングの知識をどんどん増やしていくことが、利益貢献の機会を拡大すると考えています。 顧客分析はどう? また、第一のフェーズでは顧客分析を通じて、クリエイティビティ以外の要素を補完し、武器とすることができるため、常に具体的な顧客像を意識しながら業務を進めたいと思います。第二のフェーズでは、マスメディアが以前ほど機能しない現状において、現実に効果がある手法を多数学び、ブームを作る手法を模索したいと考えています。

クリティカルシンキング入門

コツコツ学びが仕事を変える

学習時間はなぜ難しい? 今回の勉強は、以前のデータ分析の際とは異なり、毎朝コツコツと学ぶ時間を確保することが難しく、順調に進めることができませんでした。一方、実務で自然に意識していた内容が学びの一部に反映され、知識の整理に役立ちました。その結果、全体としては勉強になったと感じています。 グループ参加はどう感じる? また、グループワークへの参加については、後から参加したほうがよかったと反省しています。今後は、初めから積極的に関わることで、より多くの視点を取り入れたいと考えています。 問題の解決策は何だろう? さらに、問題解決に没頭してしまいがちな反省もあります。なぜその問題を解決する必要があるのか、根本的な問いを持つことに意識を向け、アプローチを見直すことが必要だと感じました。加えて、人に伝えることにまだ苦手意識があるため、伝え方の手法をさらに学び、業務に生かす努力を続けていきたいと思います。 知識はどう実践する? 前回受講したデータ分析の勉強と今回の学びを組み合わせ、より深い知識として業務に実践していくつもりです。今後も、言いたいことを明確にする思考法や伝え方の訓練を続け、日々の業務に活かしていきたいと考えています。

データ・アナリティクス入門

実績分析で気づく新たな視点

グラフを使い分けるには? データの多さや少なさを確認したいときは縦棒グラフ、比較を行いたいときは横棒グラフ、割合を示したい場合は円グラフを使うのが効果的です。用途に応じてこれらのグラフを使い分けることが重要です。目的を明確にした上で分析を行い、最終的に作成する資料が社内外のステークホルダーに感謝されるようなものになると理想的です。 どのグラフが最適ですか? たとえば、担当先ごとの売上や営業所間のメンバーの実績達成率を比較する際には横棒グラフが適しており、担当先のマーケットシェアを示したいときには円グラフが便利です。会議での効果的なアウトプットを意識して、適切なグラフを作成していくことが求められます。また、縦軸と横軸に何を選ぶかによってアウトプットの見方が変わることがあるので、様々な試行を行いたいと思います。 実績分析に時間を割くべき? 毎朝、実績を見る際に、自分だけでなく営業所メンバーの実績もExcelで分析しています。従来のやり方に加えて、グラフ作成にも挑戦しています。縦軸と横軸を従来とは異なる項目にしてみるなど、工夫を凝らしています。この作業にはかなりの時間を要するため、毎日1時間は数字分析の時間を確保しています。

クリティカルシンキング入門

問題解決の鍵を握る問いの磨き方

どんな問いから始める? 問いは何かということからスタートする重要性を学びました。どのような問いに答えるために分析を行うのか、その目的を確認することから始める必要があると感じました。この際、問いの妥当性を確認するために、MECEになっているか、視座・視点・視野に偏りがないかなどのポイントを自分でチェックすることが重要だと考えました。 なぜギャップが生じる? 現状の業務における課題としては、私の担当する台湾・香港エリアでの販売台数の低下に起因する過剰在庫問題があります。目指すべき目的は、不動在庫の消化および在庫レベルの適正化ですが、販売が思うように進まず、指標に対してギャップが生じています。このギャップを埋めるために、なぜ現状のギャップが発生しているのかを分析する必要があります。具体的には、カテゴリや客先別に切り分けて、予測と実績のギャップを把握し、それを要因別に分けて考えるという手順を踏みます。 何のためにデータを集める? データ収集については、その前に何のためにデータが必要であるかをしっかり考えてから行動に移します。そして、分析を行った結果をチームや販売拠点の営業メンバーに共有し、具体的な対策を検討することが重要です。

「分析 × 視点」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right