クリティカルシンキング入門

問いが導く学びの未来

イシューって何が大事? イシューを明確に設定することは非常に重要です。また、常に問いを残し、その問いを共有する姿勢が大切だと感じます。問いという形にすることで、問われた際に答えを出そうという意欲が湧き、余計なことを考える余地がなくなります。その結果、論理的な思考が促され、問題解決に繋がると考えています。加えて、知識は「インプット」から始まり、「知識の活用によるアウトプット」、さらに「他者からのフィードバック」や「振り返り」といったサイクルを継続することで身に付くと思いました。 どう計画に反映する? また、会社の方針を自部門の計画に反映させるとともに、その計画を分解して部下に展開する際にも、このアプローチは有効だと考えます。経営層の指針が正しく、かつ方向性を変えることなく伝わるためのツールとしても活用できるのではないかと思います。 計画の検証、どう進める? 計画立案にあたっては、まず必要な項目や要素を漏れなく、かつ重複なく洗い出すことが求められます。そして、思い込みを排除し、客観的な視点で検証することも重要です。さらに、計画の中でイシューを特定し、対応策が論理的であるか、また設定した枠組みから逸脱していないかを慎重に考える必要があります。最後に、各対応策の根拠を明確にし、その正当性を確認することが、計画の成功に向けた鍵となると感じました。

データ・アナリティクス入門

ロジックツリーの本質と実務への応用

MECEの難しさと挑戦 MECEを意識しすぎるあまり、本質的なロジックツリーを作れていないことがあるのは、本当にその通りだと思いました。漏れなく整理するために「その他」を多用している自分を容易に想像でき、今回の講座内容は非常に自分事として受け止めることができました。 良質な示唆を得るには? MECEは重要ですが、あくまでフレームワークの一つであり、問題解決に繋がる良質な示唆を提供できる分け方が求められます。現状の自分の役割としては、営業戦略の策定と売上増加のための施策検討があり、常に課題解決に取り組む状況です。Week 01から学んでいる内容は、まさに今の業務に直結するものです。 定量的な分析を目指して WhatやWhereを置き去りにせず、現状の分析とありたい姿やあるべき姿をしっかり定義し、どこにギャップがあるのかを定量的に、そしてMECEに整理できるようにしたいです。前提となる「現状分析やありたい姿の定義」は、頭の中でわかった気で終わるのではなく、しっかりと言語化することを意識します。 フィードバックの活かし方 MECEのアプローチは、一人でアウトプットを出したうえで、同僚や上司からフィードバックをもらい、自分では気付けない「漏れやダブり」を見つけることが大切です。そのためのブラッシュアップを行い、練習を重ねていきたいと思います。

マーケティング入門

読んで実感、働きやすさの要因とは?

ニーズとペインポイントを考える理由は? 今週の事例でもあったように、ニーズだけでなくペインポイントまで考えると、何を求めているかが明確になります。このアプローチは非常に論理的だと感じます。 コンビニ商品分析で得るものとは? 真のニーズを考える際に、コンビニの商品が変わる様子を観察するのは興味深いですね。毎週変わる商品は、誰のニーズを満たそうとしているのかを考える良い訓練になります。 業務改善にペインポイントは役立つ? 自社の職場における業務改善も、ペインポイント探しそのものだと感じました。改善エリアを見つける際に、皆が避けたがる業務や残業が多い業務には、必ず何かしらのペインポイントが存在すると考えられます。上位報告に関してもペインポイントを含めた真のニーズを考えながら資料を作成することで、質の高い資料が出来上がると考えました。 上位報告での良いサイクルの作り方は? 上位報告においては、ニーズに基づいて資料を作成し、報告後にそのニーズが満たされていたかを周囲に確認することで、良いサイクルが作れます。また、部下との接し方、面談や進捗管理においても、ニーズとペインポイントを意識して話すことが重要です。 事業探索にカスタマージャーニーの重要性は? 自領域の業務、特に事業探索ではカスタマージャーニーを意識することが大切だと感じました。

データ・アナリティクス入門

残業削減の鍵はロジックツリーとIT活用にあり

問題の本質をどう見極める? 問題や課題に対応する際、すぐに対応策を安直に打ち出すのではなく、まずはその問題や課題がどのようなもので、なぜ、どこで発生しているのかを考える必要があると学びました。これを実現するために、MECEの考え方を用いてロジックツリーで問題や課題を細分化し、対応策を複数検討し、状況に応じて採用する対応策を決定することが合理的な判断となることがわかりました。 IT活用で解決策を見つけるには? また、ITの活用によって業務効率化を検討する際には、「業務効率化」という漠然とした課題を、ロジックツリーで細分化することで解決の手がかりを得ることができます。具体的には、どこで、なぜ、どのような問題が発生しているのかを特定し、その問題を解消できるITを導入することによって、費用対効果を意識した問題解決が可能となることを理解しました。この学びは、現実の問題解決に活かせるものだと考えています。 部署の問題をどう改善する? 現在、所属する部署では残業時間が非常に多く、人員も多いという問題があります。この部署でどの作業が一番多く時間を要しているのかを、ロジックツリーで特定しました。その結果、出荷日や納期変更が頻発している作業が問題であると判明しました。したがって、この部分に有効なITの導入や、業務プロセス自体の見直しを提案したいと考えています。

データ・アナリティクス入門

プロセスが紡ぐ学びの軌跡

原因探索はどう? 問題の原因を探る際、プロセスに分けて考えることの重要性を実感しました。Week1で学んだ「分析は要素を分けて比較する」という手法を再確認し、今後も意識して取り組んでいきたいと思います。また、対概念について学ぶ中で「問題に関係する要素」と「それ以外」を区別するシンプルな考え方が非常に使いやすいと感じました。これまでに習ったフレームワークとも併せ、具体的な分析に活かしていきたいです。 判断基準はどう? さらに、「正解」が存在しない中で最適な案を選ぶには、適切な判断基準に基づいて評価するプロセスが不可欠であることが印象に残りました。精度を高める努力は必要ですが、時間をかけすぎないバランス感覚を持ちながら課題に取り組むことが大切だと考えています。 営業戦略考える? また、売上や利益を拡大していくために、What、Where、Why、Howを丁寧に検討し、効果的な営業施策を立案・実行する必要性を感じました。関係者に説得力のある行動計画を提示することで、より良い成果を得られるよう努めていきます。 多角的視点は? 一つのアイデアに固執せず、多角的な視点で物事を見ることも心がけたいです。正解のない状況でも、適切な判断基準を設定して効率的に進めることで、無駄な時間を省きながら最適な解決策にたどり着けると実感しました。

戦略思考入門

差別化を目指すVRIO活用の挑戦

どこで差別化が足りる? 私は、日常業務において差別化を意識して取り組んできましたが、その中で場当たり的な意見に左右されがちであったことを今回の学習を通じて実感しました。VRIOフレームワークを活用し、情報を抜けもれなく整理することで、場当たり的でない継続的な施策を考えることができると理解しました。 事例と現実のギャップは? 明確な事例であれば、VRIOでの情報整理はスムーズに進むでしょう。しかし、ビジネスの種類や状況によっては必ずしもそう簡単にはいかないと感じます。例えば、「顧客にとっての価値」という観点では、BtoBよりBtoCの方が分かりやすくまとめられるかもしれません。また、「Yes」「No」の判断には、VRIO以外のフレームワークを組み合わせる必要があるかもしれません。実際のビジネスは複雑であるため、分析する際にはいくつかのフレームワークを組み合せることが求められる、とハードルの高さを感じています。 広報での活用法は? それでも、VRIOの活用は私の従事する広報業務において非常に有効だと考えています。できるだけ早く実行に移したいと考えつつも、現実的には一筋縄ではいかないと感じています。まずは、日々の企画業務に少しずつ取り入れ、周囲のメンバーからのフィードバックを受けつつ、多様な視点を吸収し、判断軸を精緻化していきたいと思っています。

データ・アナリティクス入門

プロセス分解で業務改善の新たな一歩

プロセス分解の重要性とは? 問題の原因を探る方法として、プロセス分解が非常に有効である。例えば、広告であれば表示からクリック、クリックから申し込み(コンバージョン)といった形で細かく分解することができる。また、解決法(HOW)を検討する際にはA/Bテストが有効である。この方法では、比較対象以外の条件を揃え、目的を明確にすることが重要である。 数字だけではわからないことは? 現在の企画管理業務では、出てきた数字だけで分析や判断をしてしまうことが多い。しかし、出てきた数字の要因がどこにあるのかを探るためには、細かいプロセス分解ができなくても、大枠でのプロセスに分けて見ることができるのではないかと考えた。今回の講義を通して、A/Bテストの有効性を学べたが、A/Bテストの範疇を超えた検証(生産プロセスの改善や販売における改善検証)のやり方についても学びたいと思った。 データ分析の効率化をどう進める? 講義では、身近なデータを使ってプロセス分解を行う方法について触れられた。日々の業務におけるデータ分析のスピードアップや、分析に十分な時間を確保できているかを検証する必要を感じた。具体的には、データ収集、データ加工、分析、共有にそれぞれどれくらいの工数がかかっているのかを明確にし、さらに効率化して、より早く深い分析と共有を実践できる方法を探りたい。

データ・アナリティクス入門

過去との比較が教える成功のカギ

分析目的は何? 分析の目的やゴールを明確に決めることは、分析の方向性や手法、評価基準を正しく設定するために非常に重要です。明確な目的がなければ、分析結果がどのように活用されるか不透明となり、効果的な判断が難しくなってしまいます。 比較はどう考える? また、分析の本質は比較にあります。過去と現在のデータや異なる状況を比較することで、パターンや傾向が明確になり、最適な選択や戦略を導き出すことができます。 SNS比較で何が見える? 私自身の仕事においては、過去のSNSキャンペーンを期間ごとに区切り、比較することで、これまで見えていなかった結果が浮かび上がると感じました。ただやりっぱなしにするのではなく、過去との比較から数字の意味や背景が見えてくるため、結果の解釈がより具体的になると思います。たとえば、フォロワー数やエンゲージメント数の推移だけを見るのではなく、過去のキャンペーンと比較することで「なぜ今この結果が出ているのか」という背景に迫ることができます。 データ活用はどう? さらに、実際にデータを活用してマーケティングキャンペーンを企画することも有効です。小規模なプロジェクトを自ら立ち上げ、仮想のデータセットを使用してキャンペーンを分析することで、製品ごとの購買データに基づいた最適な広告戦略を立てる試みが可能になると感じました。

クリティカルシンキング入門

データが導く採用成功法則

いつデータは成果に? 十分なデータを蓄積することが、正確な現状把握と適切な問いの設定につながるという点が非常に印象的でした。日々あらゆるデータを収集し、いつ何に対して答えを出すべきかを意識することが問題解決の基本であると再認識しました。 ROI考慮の意義は? また、解決策を検討する際には、ただ増やすのではなく費用対効果(ROI)も十分に考慮すべきだという点も学びました。特定の業務を増やすことがオペレーションコストの増加や問題の複雑化につながることがあるため、必要に応じて削減する視点も取り入れることが大切だと感じます。さまざまな角度から分析することで、より有効な対策を講じる可能性が広がるとも思います。 採用戦略の真髄は? 私の会社では現在、採用活動の強化に取り組んでおります。今回学んだ内容は、採用数の増加に向けた戦略に役立つと感じました。例えば、時期別の応募者数を分析し、各流入経路の割合からボトルネックを明確にすることで、仮説に基づいた具体的な対策を講じ、採用数の向上を目指したいと考えています。 PDCAで何が変わる? この学びを整理した上で、抽象度の高い問題解決が求められる業務にも積極的に挑戦していきたいです。PDCAサイクルを何度も回すことで、立てる問いの質が向上し、より良い成果につながると信じています。

クリティカルシンキング入門

振り返りで学びを深める方法

目的は明確ですか? データを扱う際には、目的を明確にし、それにふさわしい形で情報を伝えることが重要です。このことは、相手に何を伝えたいのかを考える際に非常に役立ちます。また、目的に立ち返る姿勢も欠かせないと感じました。 良い文章の秘訣は? 良い文章とは、しっかりと目的を把握し、読み手の立場を理解し、内容がまとまっていることに加え、読んでもらえる魅力があることです。この考えをもとに文章を書くことが求められるでしょう。 グラフの選び方は? 例えば、製品の売上データを使用した顧客への活動プランを作成する際は、どの形式のグラフがデータを分かりやすく示せるかを考えます。また、スライド作成においては、強調したい部分に工夫を凝らし、フォントの変更やアイコンの適切な利用を心掛けます。 相手を意識できる? 講演会の企画書においては、その企画書を読む相手が誰なのか(例えば、依頼する医師なのか、社内向けのプレゼン用なのか)を意識し、目的が伝わる文を作成します。 行動はどう伝える? さらに、会議の議事録を作成する際には、相手にどのような行動を期待するのか、そしてどうすれば読んでもらえるかを考慮して記録します。 メールの狙いは? また、社内メールや医師へのアポイントメールでは、目的を明確にし、タイトルにも趣向を凝らすことが肝心です。

デザイン思考入門

AIが切り拓く試作スピード革命

不確実性はどこに? 試作の方法によって得られるフィードバックの性質が異なる点は非常に重要だと感じました。どの試作を採用するかという議論に陥りがちですが、その前にまず、どの部分に不確実性があるのかを明確にし、その不確実性を早期に確認するために、どの試作をどの順序で使うべきかを検討する必要があると思います。 AI導入は効果的? また、AIを活用してWebアプリのプロトタイプを作成したところ、パワーポイントの説明資料以上に多くの反応をもらうことができました。以前は、静的HTMLのプロトタイプを作るだけでも1ヶ月程度かかり、動的に変化するシステムではさらに長い期間が必要でした。しかし、AIの導入により、1日から数日でプロトタイプを完成させることが可能となりました。得られるフィードバックの質や量の面からも、AIを活用したシステムのプロトタイプ作成は不可欠だと実感しました。 次回の方向性は? 現在進行中のプロジェクトでは、人力でプロトタイプを作成していますが、個人的にもAIを活用してプロトタイプを作る検討を進めています。まだ途中段階ではありますが、現状のAI技術でどこまで要件を反映したプロトタイプが作成できるのかを確認し、十分な要件が盛り込めることが確認できれば、次回以降のプロジェクトではAIを前提としたアプローチを採用したいと考えています。

クリティカルシンキング入門

伝えたい順で魅せるスライド術

伝える順序は大切? 学びの中で、まず伝える順序に着目することの重要性を再認識しました。スライド作成時に、まず何を伝えたいのか、またその根拠としてどのグラフやデータが必要かを意識することで、受け手にとって分かりやすい資料が作れると感じました。さらに、資料全体の色調、書体、イラストなど、視覚的な要素にも工夫を凝らすことで、相手にどう捉えてもらうかを考える機会になりました。 実務での活用はどう? また、学んだ内容は実際の業務にも直結しています。社内の戦略会議や中間報告、トラッキング結果の共有など、社内向けのプレゼン資料作成で活用できることが実感できました。顧客への説明資料においては、製品の伝えたいメッセージや、説得力のあるエビデンスの見せ方に役立っています。 資料見直しの効果は? さらに、カタログや各種資材の作成においては、我々が何を伝えたいのか、そのためにどの情報をどのように見せるかを工夫する上で、大変参考になりました。作成した資料は翌朝に再度見直すことで、伝えたい内容が改めて明確になり、スライド全体を俯瞰して強調すべきポイントやグラフの見やすさを確認する習慣が、資料の質をさらに向上させています。上司や同僚の意見を取り入れることや、資料作成後にロープレで流れや根拠を整然と説明できるか確認するプロセスも、非常に有益な学びとなりました。

「非常」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right