クリティカルシンキング入門

プレゼンとメール改革で顧客を引きつける方法

「視覚化」って何? 「視覚化の目的」と「伝えるべきメッセージ」という言葉に、私自身とても驚かされました。日常業務の中で作成している報告書やメール、プレゼンテーション資料が単なる作業になってしまっていないか、と考えさせられました。これらの言葉に照らし合わせ、内容や表現が適切かを改めて見直していきたいと感じています。 プレゼン資料はどう伝える? 特に、会社紹介のプレゼンテーション資料やそれを送付するメールについて、活用と実践を重ねていく必要性があります。私は新規の潜在顧客を訪問する際に会社を紹介するプレゼンテーションを行うことが多いですが、現在の方法が十分かどうか、相手の知りたい情報をわかりやすく伝えられているかを再確認したいと思います。メールでも、丁寧に書くことを心がけていますが、書き上げると長くなりがちです。読み手にとって理解しやすい文章になっているかを意識し、より良いメール作成を目指したいです。 相手への意識は足りる? プレゼンテーションを見せる相手やメールを送る相手のことを常に意識することも重要です。相手の業界や事業内容に応じて、スライドを削ったり、追加や修正をしたりする必要がある場合があります。弊社に対するさらなる興味を引く内容になっているか、来週以降の新規訪問に向け、プレゼンテーションを見直し、修正することに力を入れたいと思います。

データ・アナリティクス入門

データで解き明かす!仮説立案の極意

仮説の種類と意義を知る 仮説とは、ある論点に対する仮の答えのことを指します。仮説には目的に応じて「結論の仮説」と「問題解決の仮説」がありますが、その中でも仮説は様々なフレームワークを用いて複数用意する必要があります。検証方法としては、データ収集が重要であり、目的対象を検討した上でアンケート調査や口頭調査を行うことが有効です。 打ち手を選ぶ際のフレームワーク活用法は? 業務に活用できる場面としては、打ち手の検討があります。問題解決のためにどの打ち手が効果的かを考える際には、フレームワークを用いてどこに効果があるかを検討することが求められます。ブレインストーミングから打ち手を選定する際にも、枠組みから検討し、その打ち手の効果測定や仮説作りのためのデータ収集が必要です。 フレームワークで複数視点を持つには? 複数の仮説を持ちながら物事を検討することは重要です。フレームワークを活用することで、様々な視点から会議に参加する準備が整います。そのためには、フレームワークの知識を習得し、何が論点になっているのかを正確に確認することが必要です。 データ検証の質を高める手法 データ検証の項目を洗い出す際には、目的が曖昧なままアンケート調査を行うのではなく、目的を明確に定め、それに沿った項目や枠組みを検討しながら実施することで、質の高い結果が得られます。

データ・アナリティクス入門

データに賭けた挑戦と発見

目標設定はどう? 「分析は比較なり」「何を明らかにしたいのか」という考えを軸に、データから得られる情報を見失わないため、まず明確な目標を設定しています。その目標に向かい、必要なデータやストーリーともいえる仮説を構築し、試行と検証を繰り返すことで、求める結果に近づけています。 データ表現はどう? また、取り扱うデータの種類に応じた加工方法やグラフの見せ方が重要であると感じています。そのため、状況に合わせて最適な表現方法を選ぶことに努め、いかなる場合も「とりあえず」での加工を避け、ビジネスにおける分析では、データに入る前に「目的」や「仮説」がしっかり整っていることを確認しています。 ランニング費用はどう? これまで部門費管理を想定していた中で、担当しているITツールのランニングコストについても、使用金額や実際の作業時間など、これまで取得してこなかった新たなデータ要素を活用していく計画です。これにより、必要なツールや今後の投資対象となるソフトウエアの分析に役立てようとしています。 データ収集の工夫はどう? さらに、データが不足している点を解消するため、まずは必要なデータの収集に力を入れると同時に、作業の効率化や一部自動化の導入も視野に入れています。今回の講座を通じて、時間の有限性を改めて認識し、これからはより計画的に活動していく所存です。

データ・アナリティクス入門

プロセス分解で業務改善の新たな一歩

プロセス分解の重要性とは? 問題の原因を探る方法として、プロセス分解が非常に有効である。例えば、広告であれば表示からクリック、クリックから申し込み(コンバージョン)といった形で細かく分解することができる。また、解決法(HOW)を検討する際にはA/Bテストが有効である。この方法では、比較対象以外の条件を揃え、目的を明確にすることが重要である。 数字だけではわからないことは? 現在の企画管理業務では、出てきた数字だけで分析や判断をしてしまうことが多い。しかし、出てきた数字の要因がどこにあるのかを探るためには、細かいプロセス分解ができなくても、大枠でのプロセスに分けて見ることができるのではないかと考えた。今回の講義を通して、A/Bテストの有効性を学べたが、A/Bテストの範疇を超えた検証(生産プロセスの改善や販売における改善検証)のやり方についても学びたいと思った。 データ分析の効率化をどう進める? 講義では、身近なデータを使ってプロセス分解を行う方法について触れられた。日々の業務におけるデータ分析のスピードアップや、分析に十分な時間を確保できているかを検証する必要を感じた。具体的には、データ収集、データ加工、分析、共有にそれぞれどれくらいの工数がかかっているのかを明確にし、さらに効率化して、より早く深い分析と共有を実践できる方法を探りたい。

クリティカルシンキング入門

振り返りで学びを深める方法

目的は明確ですか? データを扱う際には、目的を明確にし、それにふさわしい形で情報を伝えることが重要です。このことは、相手に何を伝えたいのかを考える際に非常に役立ちます。また、目的に立ち返る姿勢も欠かせないと感じました。 良い文章の秘訣は? 良い文章とは、しっかりと目的を把握し、読み手の立場を理解し、内容がまとまっていることに加え、読んでもらえる魅力があることです。この考えをもとに文章を書くことが求められるでしょう。 グラフの選び方は? 例えば、製品の売上データを使用した顧客への活動プランを作成する際は、どの形式のグラフがデータを分かりやすく示せるかを考えます。また、スライド作成においては、強調したい部分に工夫を凝らし、フォントの変更やアイコンの適切な利用を心掛けます。 相手を意識できる? 講演会の企画書においては、その企画書を読む相手が誰なのか(例えば、依頼する医師なのか、社内向けのプレゼン用なのか)を意識し、目的が伝わる文を作成します。 行動はどう伝える? さらに、会議の議事録を作成する際には、相手にどのような行動を期待するのか、そしてどうすれば読んでもらえるかを考慮して記録します。 メールの狙いは? また、社内メールや医師へのアポイントメールでは、目的を明確にし、タイトルにも趣向を凝らすことが肝心です。

データ・アナリティクス入門

分析力で交渉力を高める秘訣

比較の重要性をどう捉える? 分析の本質は比較にあります。条件を揃えて比較することが重要であり、この際、目の前の情報に引っ張られないよう注意が必要です。また、目の前にないものについても、目的に照らして何と何を比較するべきかを見極めることが重要です。最終的に、分析によって明らかにしたいことを明確にし、その目的に沿った比較対象を選定することが求められます。 交渉をどう深める? 私の場合、データを直接使用する仕事ではありません。しかし、交渉事の割合が多いため、この考え方を活用したいと考えています。例えば、説明や交渉時に事実を列挙することは重要ですが、それだけでなく、「もしそれがなかったらどうだろう?」といった異なる前提を考慮に入れた論理構成を加えることで、説明や交渉に深みを持たせたいと考えています。 分析に必要な視点とは? 抑えるべきポイントは以下の通りです。まず、目的を明確にすることです。今までの行動パターンでは、調べて比較するというアクションをとっていましたが、結果的にただ彷徨い、同じ場所をぐるぐるしているだけでした。 見えない情報をどう扱う? さらに、目に見えない情報も考慮する必要があります。目の前の情報だけで判断すると、ありきたりで的外れな結論に至ってしまうことがあります。正しい分析方法を身に付けたいと強く思っています。

データ・アナリティクス入門

仮説が導く実践の分析術

目的設定は正しい? データ分析は、単に比較するだけではなく、まず目的を明確にし、自分なりに仮説を立てるところから始まります。仮説に基づいて分析作業を進め、その結果から具体的な示唆を得る一連の流れを意識することが重要です。 比較条件は合ってる? また、比較対象とする対象の条件を揃えることが不可欠です。この前提が誤っていると、適切な分析が行えなくなるため、比較対象に問題がないかどうかも注意深く判断する必要があります。 採用現場でどう役立つ? 採用活動の現場では、以下のような場面でデータ分析が役立つと考えています。まず、エージェントや媒体の成果を基にした母集団の形成。次に、面接の実施率や内定承諾率など、候補者起因の歩留まり改善。そして自社の採用活動全体のパフォーマンス管理や改善点の発見、さらには新たなサービス導入の検討時にも活用できるでしょう。 集計方法に再考は? 現状、応募数や内定数など各選考フェーズでの実数や展開率の集計は行っていますが、そのデータの取り方が最適かどうか、また他により良い集計方法がないか再検討する余地があると感じています。さらに、定量的な成果を示すことで、他部門への説得材料とする狙いもあり、現状の課題、例えば選考のリードタイムの短縮などについて具体的に提示し、改善に向けた会議を進めていきたいと考えています。

データ・アナリティクス入門

数字が語る驚きの実態

なぜ多角的に見る? データ分析は、ただデータを見るだけでなく、さまざまな角度から比較し、分析することが重要だと感じました。数字にまとめたり、数式を用いて関係性を明らかにしたりすることで、隠れた事実に気付くことができます。また、代表値や分布、平均値と標準偏差など、基礎的な手法を通じてデータ全体の傾向を掴むことが効果的です。 どの代表値が適切? 社内で扱うデータはボリュームが大きいことが多いため、比較の際には代表値に注目する場面が多かったです。これまでは直感的に平均値や中央値を代表値としていたものの、データ全体の特徴を踏まえてどの代表値を採用すべきか再検討する必要があると学びました。さらに、業務ではデータをマトリックスにまとめたり、グラフや分布図にして視覚的に把握できる形に変換することで、数字が伝える実態をより明確に捉えることができると実感しました。 何を比較検証すべき? 大量のデータを取り扱う際は、さまざまな代表値の算出方法を試すこと、また平均値においても単純平均以外のパターンが存在することを忘れずに検証することが大切だと感じました。データを可視化する際には、「何を見たいのか」「どこを比較するのか」といった目的を明確にした上で、見たい事象が浮かび上がるよう工夫することが、今後の分析業務において重要なポイントだと再認識しました。

クリティカルシンキング入門

日々のミーティングを変える3つの視座

バイアスを克服するには? 自分自身の経験や思考に基づいて偏った視点や考え方を持つことは自然なことです。しかし、それを認識し、偏った視点で物事を考えないようにするためには、特定の思考方法を学ぶことが重要です。ただ意識するだけでなく、3つの視座を持つことや自分を批判するもう一人の自分を作り、一定の方法や構造化されたスキルを用いて少しずつ学んでいく必要があると感じました。 ミーティングを効果的に活用するには? 私は頻繁にプロジェクトベースで仕事をするため、部署やチームを横断するメンバーが参加する日々のミーティングでこれを活用したいと思います。自身の考え方だけでなく、ミーティングに参加するメンバー全員がそれぞれの経験や思考に基づいて発言しているはずです。そのため、一歩引いた立場で意見をまとめ、プロジェクトをしっかり前に進めるために論点の整理やネクストステップの設計に役立てたいです。 効果的な思考法を実践するには? 頭の使い方を意識し、常に3つの視座を意識して自分を批判的に見るもう一人の自分を思い描くことが重要です。また、ミーティングの真の目的が何かをまず確認し、参加者全員の認識を統一させることも必要です。これらを常に意識し、繰り返し実践することで、できなかった時や他のメンバーからのフィードバックを受け入れることができるはずです。

データ・アナリティクス入門

小さな実験、大きな変革

A/Bテストの意義は? 今週は、A/Bテストの重要性とその実施ポイントについて学びました。効果検証においては、目的と仮説が非常に大切であり、1要素ずつ同条件で比較することで、検証の精度が上がると実感しました。この考え方は、今後の業務改善にも大いに役立つと思います。 現場での工夫は? 学んだ内容は、現場での作業効率向上や安全対策の見直しに応用できると感じました。たとえば、同じ作業を複数の方法で実施し、作業時間や事故発生の状況を比較することで、どの方法がより効果的か客観的に判断できます。また、新しい手順やツールを導入する際には、いきなり全体に適用するのではなく、まず小規模でテストし、得られたデータをもとに判断することで、リスクを抑えた改善が可能となります。こうした手法は、現場改善の精度を高め、納得感を持たせるためにも有用です。 改善策はどのように? まずは、改善したい作業手順を一つ選び、従来の方法と新たに提案する方法の両方を明確に定義します。その上で、両手法を同条件・同期間で実施できるよう現場を調整し、作業時間や安全面、作業者の負担などのデータを記録・比較します。実施前には「どちらの方法がより効率的か」という仮説を立て、検証の目的を関係者と十分に共有してからテストを行い、効果が確認された場合は現場全体への展開を検討する方針です。

データ・アナリティクス入門

実践で磨く、A/Bテストの秘訣

情報伝達の大切さは? 今回の学びを通して、情報が漏れなく重複なく伝わることの大切さを改めて認識しました。目的を見失わず、必要なポイントを抑えることの重要性が意識されました。 A/Bテストの効果は? 特に、A/Bテストの活用は検証のしやすさや結果の共有において分かりやすい手法であると感じました。一定の制限をかけ、絞り込むことで方向性を見失わずに進める工夫にも気づきました。 広告運用のコツは? 実務でgoogle広告を活用する中で、A/Bテストの形式で構成され、AIが複数のセンテンスを組み合わせることで広告の最適化を図る仕組みを再認識しました。小さな変更を繰り返すアプローチは、実際にすぐ活用できる効果的な方法だと実感しています。 プロモーションはどう? また、運用しているプロモーションに関しては、早速実践に移し、チーム内で共有して理解を深めることが重要だと感じました。取得したデータをもとに分析し、意見を擦り合わせることで、より精度の高い施策へと進化させていく予定です。 チームでの改善は? 今後は、A/Bテストの手法をさらに高度なものにグレードアップすることも視野に入れています。ただし、個々のスキルに偏ることなく、チーム全体でアウトプットの場を設け、ディスカッションを重ねるよう取り組んでいきたいと考えています。

データ・アナリティクス入門

分析で見つける未知の可能性

分析開始の目的は? 実際に分析を始める前に、その分析の目的を明確にすることが重要です。目的が曖昧では、分析自体の意味がなくなります。分析の本質は比較にあります。比較を行わなければ、物事の良否を判断することはできませんし、絶対的に良いものや悪いものというものも存在しません。意思決定が相対的な比較によって行われると考えると、分析(比較)の重要性が一層理解されます。 比較対象の選び方は? そのためには、適切な比較対象を選ぶことが必要です。しかし、すべての情報を持っているわけではなく、自分の理解が正しいかもわからないため、この作業は現実としては難しいこともあります。 解決すべき課題は? 分析を通じて解決したい課題は多岐にわたります。たとえば、効果的な授業や学習方法を知りたいとき、また生徒募集活動をどの地域で積極的に行うべきか、生徒や保護者の学校への満足度、勤務校の強みと弱みの分析などです。これらの目的を達成するために、適切な分析を行うことが望ましいです。 どんなデータ収集? まずは、各目的に応じたデータ収集から始めたいと考えています。生徒の成績推移や大学合格実績といった定量分析に加え、アンケートやインタビュー(個人・集団)による定性分析も通じて、データを集め、その中から中核となる特質を抽出するようにしたいです。

「目的 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right